Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Arcovito is active.

Publication


Featured researches published by Alessandro Arcovito.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography

Dominique Bourgeois; Beatrice Vallone; Friederich Schotte; Alessandro Arcovito; Adriana E. Miele; Giuliano Sciara; Micheal Wulff; Philip A. Anfinrud; Maurizio Brunori

Although conformational changes are essential for the function of proteins, little is known about their structural dynamics at atomic level resolution. Myoglobin (Mb) is the paradigm to investigate conformational dynamics because it is a simple globular heme protein displaying a photosensitivity of the iron–ligand bond. Upon laser photodissociation of carboxymyoglobin Mb a nonequilibrium population of protein structures is generated that relaxes over a broad time range extending from picoseconds to milliseconds. This process is associated with migration of the ligand to cavities in the matrix and with a reduction in the geminate rebinding rate by several orders of magnitude. Here we report nanosecond time-resolved Laue diffraction data to 1.55-Å resolution on a Mb mutant, which depicts the sequence of structural events associated with this extended relaxation. Motions of the distal E-helix, including the mutated residue Gln-64(E7), and of the CD-turn are found to lag significantly (100–300 ns) behind local rearrangements around the heme such as heme tilting, iron motion out of the heme plane, and swinging of the mutated residue Tyr-29(B10), all of which occur promptly (≤3 ns). Over the same delayed time range, CO is observed to migrate from a cavity distal to the heme known to bind xenon (called Xe4) to another such cavity proximal to the heme (Xe1). We propose that the extended relaxation of the globin moiety reflects reequilibration among conformational substates known to play an essential role in controlling protein function.


Journal of Biological Chemistry | 2002

Structural dynamics of myoglobin: Ligand migration among protein cavities studied by fourier transform infrared/temperature derivative spectroscopy

Don C. Lamb; Karin Nienhaus; Alessandro Arcovito; Federica Draghi; Adriana E. Miele; Maurizio Brunori; G. Ulrich Nienhaus

Fourier transform infrared (FTIR) spectroscopy in the CO stretch bands combined with temperature derivative spectroscopy (TDS) was used to characterize intermediate states obtained by photolysis of two sperm whale mutant myoglobins, YQR (L29(B10)Y, H64(E7)Q, T67(E10)R) and YQRF (with an additional I107(G8)F replacement). Both mutants assume two different bound-state conformations, A0 and A3, which can be distinguished by their different CO bands near 1965 and 1933 cm−1. They most likely originate from different conformations of the Gln-64 side chain. Within each A substate, a number of photoproduct states have been characterized on the basis of the temperature dependence of recombination in TDS experiments. Different locations and orientations of the ligand within the protein can be distinguished by the infrared spectra of the photolyzed CO. Recombination from the primary docking site, B, near the heme dominates below 50 K. Above 60 K, ligand rebinding occurs predominantly from a secondary docking site, C′, in which the CO is trapped in the Xe4 cavity on the distal side, as shown by crystallography of photolyzed YQR and L29W myoglobin CO. Another kinetic state (C′′) has been identified from which rebinding occurs around 130 K. Moreover, a population appearing above the solvent glass transition at ∼180 K (D state) is assigned to rebinding from the Xe1 cavity, as suggested by the photoproduct structure of the L29W sperm whale myoglobin mutant. For both the YQR and YQRF mutants, rebinding from the B sites near the heme differs for the two A substates, supporting the view that the return of the ligand from the C′, C′′, and D states is not governed by the recombination barrier at the heme iron but rather by migration to the active site. Comparison of YQR and YQRF shows that access to the Xe4 site (C′) is severely restricted by introduction of the bulky Phe side chain at position 107.


Nucleic Acids Research | 2013

Nucleophosmin mutations alter its nucleolar localization by impairing G-quadruplex binding at ribosomal DNA

Sara Chiarella; Antonella De Cola; Giovanni Luca Scaglione; Erminia Carletti; Vincenzo Graziano; Daniela Barcaroli; Carlo Lo Sterzo; Adele Di Matteo; Carmine Di Ilio; Brunangelo Falini; Alessandro Arcovito; Vincenzo De Laurenzi; Luca Federici

Nucleophosmin (NPM1) is an abundant nucleolar protein implicated in ribosome maturation and export, centrosome duplication and response to stress stimuli. NPM1 is the most frequently mutated gene in acute myeloid leukemia. Mutations at the C-terminal domain led to variant proteins that aberrantly and stably translocate to the cytoplasm. We have previously shown that NPM1 C-terminal domain binds with high affinity G-quadruplex DNA. Here, we investigate the structural determinants of NPM1 nucleolar localization. We show that NPM1 interacts with several G-quadruplex regions found in ribosomal DNA, both in vitro and in vivo. Furthermore, the most common leukemic NPM1 variant completely loses this activity. This is the consequence of G-quadruplex–binding domain destabilization, as mutations aimed at refolding the leukemic variant also result in rescuing the G-quadruplex–binding activity and nucleolar localization. Finally, we show that treatment of cells with a G-quadruplex selective ligand results in wild-type NPM1 dislocation from nucleoli into nucleoplasm. In conclusion, this work establishes a direct correlation between NPM1 G-quadruplex binding at rDNA and its nucleolar localization, which is impaired in the acute myeloid leukemia-associated protein variants.


Proceedings of the National Academy of Sciences of the United States of America | 2007

X-ray structure analysis of a metalloprotein with enhanced active-site resolution using in situ x-ray absorption near edge structure spectroscopy

Alessandro Arcovito; M. Benfatto; Michele Cianci; S. Samar Hasnain; Karin Nienhaus; G. Ulrich Nienhaus; Carmelinda Savino; Richard W. Strange; Beatrice Vallone; Stefano Della Longa

X-ray absorption spectroscopy is exquisitely sensitive to the coordination geometry of an absorbing atom and therefore allows bond distances and angles of the surrounding atomic cluster to be measured with atomic resolution. By contrast, the accuracy and resolution of metalloprotein active sites obtainable from x-ray crystallography are often insufficient to analyze the electronic properties of the metals that are essential for their biological functions. Here, we demonstrate that the combination of both methods on the same metalloprotein single crystal yields a structural model of the protein with exceptional active-site resolution. To this end, we have collected an x-ray diffraction data set to 1.4-Å resolution and Fe K-edge polarized x-ray absorption near edge structure (XANES) spectra on the same cyanomet sperm whale myoglobin crystal. The XANES spectra were quantitatively analyzed by using a method based on the multiple scattering approach, which yielded Fe-heme structural parameters with ±(0.02–0.07)-Å accuracy on the atomic distances and ±7° on the Fe–CN angle. These XANES-derived parameters were subsequently used as restraints in the crystal structure refinement. By combining XANES and x-ray diffraction, we have obtained an cyanomet sperm whale myoglobin structural model with a higher precision of the bond lengths and angles at the active site than would have been possible with crystallographic analysis alone.


Inorganic Chemistry | 2008

X-ray Absorption Spectroscopy of Hemes and Hemeproteins in Solution: Multiple Scattering Analysis

Paola D'Angelo; Andrea Lapi; Valentina Migliorati; Alessandro Arcovito; M. Benfatto; Otello Maria Roscioni; Wolfram Meyer-Klaucke; Stefano Della-Longa

A full quantitative analysis of Fe K-edge X-ray absorption spectra has been performed for hemes in two porphynato complexes, that is, iron(III) tetraphenylporphyrin chloride (Fe(III)TPPCl) and iron(III) tetraphenylporphyrin bis(imidazole) (Fe(III)TPP(Imid)2), in two protein complexes whose X-ray structure is known at atomic resolution (1.0 A), that is, ferrous deoxy-myoglobin (Fe(II)Mb) and ferric aquo-myoglobin (Fe(III)MbH2O), and in ferric cyano-myoglobin (Fe(III)MbCN), whose X-ray structure is known at lower resolution (1.4 A). The analysis has been performed via the multiple scattering approach, starting from a muffin tin approximation of the molecular potential. The Fe-heme structure has been obtained by analyzing independently the Extended X-ray Absorption Fine Structure (EXAFS) region and the X-ray Absorption Near Edge Structure (XANES) region. The EXAFS structural results are in full agreement with the crystallographic values of the models, with an accuracy of +/- 0.02 A for Fe-ligand distances, and +/-6 degrees for angular parameters. All the XANES features above the theoretical zero energy (in the lower rising edge) are well accounted for by single-channel calculations, for both Fe(II) and Fe(III) hemes, and the Fe-N p distance is determined with the same accuracy as EXAFS. XANES evaluations of Fe-5th and Fe-6th ligand distances are determined with 0.04-0.07 A accuracy; a small discrepancy with EXAFS (0.01 to 0.05 A beyond the statistical error), is found for protein compounds. Concerns from statistical correlation among parameters and multiple minima in the parameter space are discussed. As expected, the XANES accuracy is slightly lower than what was found for polarized XANES on Fe(III)MbCN single crystal (0.03-0.04 A), and states the actual state-of-the-art of XANES analysis when used to extract heme-normal parameters in a solution spectrum dominated by heme-plane scattering.


Journal of Biological Chemistry | 2010

Nucleophosmin C-terminal leukemia-associated domain interacts with G-rich quadruplex forming DNA.

Luca Federici; Alessandro Arcovito; Giovanni Luca Scaglione; Flavio Scaloni; Carlo Lo Sterzo; Adele Di Matteo; Brunangelo Falini; Bruno Giardina; Maurizio Brunori

Nucleophosmin (NPM1) is a nucleocytoplasmic shuttling phosphoprotein, mainly localized at nucleoli, that plays a key role in ribogenesis, centrosome duplication, and response to stress stimuli. Mutations at the C-terminal domain of NPM1 are the most frequent genetic lesion in acute myeloid leukemia and cause the aberrant and stable translocation of the protein in the cytoplasm. The NPM1 C-terminal domain was previously shown to bind nucleic acids. Here we further investigate the DNA binding properties of the NPM1 C-terminal domain both at the protein and nucleic acid levels; we investigate the domain boundaries and identify key residues for high affinity recognition. Furthermore, we demonstrate that the NPM1 C-terminal domain has a preference for G-quadruplex forming DNA regions and induces the formation of G-quadruplex structures in vitro. Finally we show that a specific sequence found at the SOD2 gene promoter, which was previously shown to be a target of NPM1 in vivo, is indeed folded as a G-quadruplex in vitro under physiological conditions. Our data extend considerably present knowledge on the DNA binding properties of NPM1 and suggest a general role in the transcription of genes characterized by the presence of G-quadruplex forming regions at their promoters.


Archives of Biochemistry and Biophysics | 2008

An X-Ray Diffraction and X-Ray Absorption Spectroscopy Joint Study of Neuroglobin.

Alessandro Arcovito; Tommaso Moschetti; Paola D'Angelo; Giordano Mancini; Beatrice Vallone; Maurizio Brunori; Stefano Della Longa

Neuroglobin (Ngb) is a member of the globin family expressed in the vertebrate brain, involved in neuroprotection. A combined approach of X-ray diffraction (XRD) on single crystal and X-ray absorption spectroscopy (XAS) in solution, allows to determine the oxidation state and the structure of the Fe-heme both in the bis-histidine and the CO-bound (NgbCO) states. The overall data demonstrate that under X-ray the iron is photoreduced fairly rapidly, and that the previously reported X-ray structure of ferric Ngb [B. Vallone, K. Nienhaus, M. Brunori, G.U. Nienhaus, Proteins 56 (2004) 85-92] very likely refers to a photoreduced species indistinguishable from the dithionite reduced protein. Results from the XAS analysis of NgbCO in solution are in good agreement with XRD data on the crystal. However prolonged X-ray exposure at 15K determines CO release. This preliminary result paves the way to experiments aimed at the characterization of pentacoordinate ferrous Ngb, the only species competent in binding external ligands such as O2, CO or NO.


Journal of Biological Chemistry | 2007

Fast dissociation of nitric oxide from ferrous Pseudomonas aeruginosa cd1 nitrite reductase: A novel outlook on the catalytic mechanism

Serena Rinaldo; Alessandro Arcovito; Maurizio Brunori; Francesca Cutruzzolà

The heme-containing periplasmic nitrite reductase (cd1 NIR) is responsible for the production of nitric oxide (NO) in denitrifying bacterial species, among which are several animal and plant pathogens. Heme NIRs are homodimers, each subunit containing one covalently bound c-heme and one d1-heme. The reduction of nitrite to NO involves binding of nitrite to the reduced protein at the level of d1-heme, followed by dehydration of nitrite to yield NO and release of the latter. The crucial rate-limiting step in the catalytic mechanism is thought to be the release of NO from the d1-heme, which has been proposed, but never demonstrated experimentally, to occur when the iron is in the ferric form, given that the reduced NO-bound derivative was presumed to be very stable, as in other hemeproteins. We have measured for the first time the kinetics of NO binding and release from fully reduced cd1 NIR, using the enzyme from Pseudomonas aeruginosa and its site-directed mutant H369A. Quite unexpectedly, we found that NO dissociation from the reduced d1-heme is very rapid, several orders of magnitude faster than that measured for b-type heme containing reduced hemeproteins. Because the rate of NO dissociation from reduced cd1 NIR, measured in the present report, is faster than or comparable with the turnover number, contrary to expectations this event may well be on the catalytic cycle and not necessarily rate-limiting. This finding also provides a rationale for the presence in cd1 NIR of the peculiar d1-heme cofactor, which has probably evolved to ensure fast product dissociation.


Biophysical Journal | 2003

Redox-Induced Structural Dynamics of Fe-Heme Ligand in Myoglobin by X-Ray Absorption Spectroscopy

S. Della Longa; Alessandro Arcovito; M. Benfatto; A. Congiu-Castellano; M. Girasole; Jean Louis Hazemann; A. Lo Bosco

The Fe(III) --> Fe(II) reduction of the heme iron in aquomet-myoglobin, induced by x-rays at cryogenics temperatures, produces a thermally trapped nonequilibrium state in which a water molecule is still bound to the iron. Water dissociates at T > 160 K, when the protein can relax toward its new equilibrium, deoxy form. Synchrotron radiation x-ray absorption spectroscopy provides information on both the redox state and the Fe-heme structure. Owing to the development of a novel method to analyze the low-energy region of x-ray absorption spectroscopy, we obtain structural pictures of this photo-inducible, irreversible process, with 0.02-0.06-A accuracy, on the protein in solution as well as in crystal. After photo-reduction, the iron-proximal histidine bond is shortened by 0.15 A, a reinforcement that should destabilize the iron in-plane position favoring water dissociation. Moreover, we are able to get the distance of the water molecule even after dissociation from the iron, with a 0.16-A statistical error.


European Biophysics Journal | 2010

Ristocetin-induced self-aggregation of von Willebrand factor.

Massimiliano Papi; Giuseppe Maulucci; Marco De Spirito; Mauro Missori; Giuseppe Arcovito; Stefano Lancellotti; Enrico Di Stasio; Raimondo De Cristofaro; Alessandro Arcovito

Von Willebrand factor (VWF) is a large multimeric adhesive glycoprotein, with complex roles in thrombosis and hemostasis, present in circulating blood and in secretory granules of endothelial cells and platelets. High shear stress triggers conformational changes responsible for both binding to the platelet receptor glycoprotein GpIb and its self-association, thus supporting the formation of platelet plug under flow. Ristocetin also promotes the interaction of VWF with GpIb and is able to induce platelet aggregation, and thus is largely used to mimic this effect in vitro. In this research paper, we followed the time course of VWF self-association in solution induced by ristocetin binding by light scattering and at the same time we collected atomic force microscopy images to clarify the nature of the assembly that is formed. In fact, this process evolves initially through the formation of fibrils that subsequently interact to form supramolecular structures whose dimensions would be capable of trapping platelets even in the absence of any degree of shear stress or interaction with external surfaces. This intrinsic property, that is the ability to self-aggregate, may be involved in some pathological settings that have been revealed in clinical practice.

Collaboration


Dive into the Alessandro Arcovito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurizio Brunori

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Andrea Bellelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Giuseppina Nocca

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Paola D'Angelo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Adriana Amalfitano

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Beatrice Vallone

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Serena Rinaldo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Benfatto

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Researchain Logo
Decentralizing Knowledge