Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Baccini is active.

Publication


Featured researches published by Alessandro Baccini.


Environmental Research Letters | 2008

A first map of tropical Africa's above-ground biomass derived from satellite imagery

Alessandro Baccini; Nadine T. Laporte; Scott J. Goetz; Mindy Sun; H Dong

Observations from the moderate resolution imaging spectroradiometer (MODIS) were used in combination with a large data set of field measurements to map woody above-ground biomass (AGB) across tropical Africa. We generated a best-quality cloud-free mosaic of MODIS satellite reflectance observations for the period 2000‐2003 and used a regression tree model to predict AGB at 1 km resolution. Results based on a cross-validation approach show that the model explained 82% of the variance in AGB, with a root mean square error of 50.5 Mg ha −1 for a range of biomass between 0 and 454 Mg ha −1 . Analysis of lidar metrics from the Geoscience Laser Altimetry System (GLAS), which are sensitive to vegetation structure, indicate that the model successfully captured the regional distribution of AGB. The results showed a strong positive correlation (R 2 = 0.90) between the GLAS height metrics and predicted AGB.


Carbon Balance and Management | 2009

Mapping and monitoring carbon stocks with satellite observations: a comparison of methods.

Scott J. Goetz; Alessandro Baccini; Nadine T. Laporte; Tracy Johns; Wayne Walker; Josef Kellndorfer; R. A. Houghton; Mindy Sun

Mapping and monitoring carbon stocks in forested regions of the world, particularly the tropics, has attracted a great deal of attention in recent years as deforestation and forest degradation account for up to 30% of anthropogenic carbon emissions, and are now included in climate change negotiations. We review the potential for satellites to measure carbon stocks, specifically aboveground biomass (AGB), and provide an overview of a range of approaches that have been developed and used to map AGB across a diverse set of conditions and geographic areas. We provide a summary of types of remote sensing measurements relevant to mapping AGB, and assess the relative merits and limitations of each. We then provide an overview of traditional techniques of mapping AGB based on ascribing field measurements to vegetation or land cover type classes, and describe the merits and limitations of those relative to recent data mining algorithms used in the context of an approach based on direct utilization of remote sensing measurements, whether optical or lidar reflectance, or radar backscatter. We conclude that while satellite remote sensing has often been discounted as inadequate for the task, attempts to map AGB without satellite imagery are insufficient. Moreover, the direct remote sensing approach provided more coherent maps of AGB relative to traditional approaches. We demonstrate this with a case study focused on continental Africa and discuss the work in the context of reducing uncertainty for carbon monitoring and markets.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Seasonal and interannual variability of climate and vegetation indices across the Amazon

Paulo M. Brando; Scott J. Goetz; Alessandro Baccini; Daniel C. Nepstad; Pieter S. A. Beck; Mary C. Christman

Drought exerts a strong influence on tropical forest metabolism, carbon stocks, and ultimately the flux of carbon to the atmosphere. Satellite-based studies have suggested that Amazon forests green up during droughts because of increased sunlight, whereas field studies have reported increased tree mortality during severe droughts. In an effort to reconcile these apparently conflicting findings, we conducted an analysis of climate data, field measurements, and improved satellite-based measures of forest photosynthetic activity. Wet-season precipitation and plant-available water (PAW) decreased over the Amazon Basin from 1996−2005, and photosynthetically active radiation (PAR) and air dryness (expressed as vapor pressure deficit, VPD) increased from 2002–2005. Using improved enhanced vegetation index (EVI) measurements (2000–2008), we show that gross primary productivity (expressed as EVI) declined with VPD and PAW in regions of sparse canopy cover across a wide range of environments for each year of the study. In densely forested areas, no climatic variable adequately explained the Basin-wide interannual variability of EVI. Based on a site-specific study, we show that monthly EVI was relatively insensitive to leaf area index (LAI) but correlated positively with leaf flushing and PAR measured in the field. These findings suggest that production of new leaves, even when unaccompanied by associated changes in LAI, could play an important role in Basin-wide interannual EVI variability. Because EVI variability was greatest in regions of lower PAW, we hypothesize that drought could increase EVI by synchronizing leaf flushing via its effects on leaf bud development.


Environmental Research Letters | 2012

Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010

Belinda Arunarwati Margono; Svetlana Turubanova; Ilona Zhuravleva; Peter Potapov; Alexandra Tyukavina; Alessandro Baccini; Scott J. Goetz; Matthew C. Hansen

As reported by FAO (2005 State of the World’s Forests (Rome: UNFAO), 2010 Forest Resource Assessment (FRA) 2010/095 (Rome: UNFAO)), Indonesia experiences the second highest rate of deforestation among tropical countries. Hence, timely and accurate forest data are required to combat deforestation and forest degradation in support of climate change mitigation and biodiversity conservation policy initiatives. Within Indonesia, Sumatra Island stands out due to the intensive forest clearing that has resulted in the conversion of 70% of the island’s forested area through 2010. We present here a hybrid approach for quantifying the extent and change of primary forest in Sumatra in terms of primary intact and primary degraded classes using a per-pixel supervised classification mapping followed by a Geographic Information System (GIS)-based fragmentation analysis. Loss of Sumatra’s primary intact and primary degraded forests was estimated to provide suitable information for the objectives of the United Nations Framework on Climate Change (UNFCCC) Reducing Emission from Deforestation and Forest Degradation (REDD and REDD+) program. Results quantified 7.54 Mha of primary forest loss in Sumatra during the last two decades (1990‐2010). An additional 2.31 Mha of primary forest was degraded. Of the 7.54 Mha cleared, 7.25 Mha was in a degraded state when cleared, and 0.28 Mha was in a primary state. The rate of primary forest cover change for both forest cover loss and forest degradation slowed over the study period, from 7.34 Mha from 1990 to 2000, to 2.51 Mha from 2000 to 2010. The Geoscience Laser Altimeter System (GLAS) data set was employed to evaluate results. GLAS-derived tree canopy height indicated a significant structural difference between primary intact and primary degraded forests (mean height 28 m 8.7 m and 19 m 8.2 m, respectively). The results demonstrate a method for quantifying primary forest cover stand-replacement disturbance and degradation that can be replicated across the tropics in support of REDDC initiatives.


Carbon Balance and Management | 2013

Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps

Edward T. A. Mitchard; Sassan Saatchi; Alessandro Baccini; Gregory P. Asner; Scott J. Goetz; Nancy Lee Harris; Sandra A. Brown

BackgroundMapping the aboveground biomass of tropical forests is essential both for implementing conservation policy and reducing uncertainties in the global carbon cycle. Two medium resolution (500 m – 1000 m) pantropical maps of vegetation biomass have been recently published, and have been widely used by sub-national and national-level activities in relation to Reducing Emissions from Deforestation and forest Degradation (REDD+). Both maps use similar input data layers, and are driven by the same spaceborne LiDAR dataset providing systematic forest height and canopy structure estimates, but use different ground datasets for calibration and different spatial modelling methodologies. Here, we compare these two maps to each other, to the FAO’s Forest Resource Assessment (FRA) 2010 country-level data, and to a high resolution (100 m) biomass map generated for a portion of the Colombian Amazon.ResultsWe find substantial differences between the two maps, in particular in central Amazonia, the Congo basin, the south of Papua New Guinea, the Miombo woodlands of Africa, and the dry forests and savannas of South America. There is little consistency in the direction of the difference. However, when the maps are aggregated to the country or biome scale there is greater agreement, with differences cancelling out to a certain extent. When comparing country level biomass stocks, the two maps agree with each other to a much greater extent than to the FRA 2010 estimates. In the Colombian Amazon, both pantropical maps estimate higher biomass than the independent high resolution map, but show a similar spatial distribution of this biomass.ConclusionsBiomass mapping has progressed enormously over the past decade, to the stage where we can produce globally consistent maps of aboveground biomass. We show that there are still large uncertainties in these maps, in particular in areas with little field data. However, when used at a regional scale, different maps appear to converge, suggesting we can provide reasonable stock estimates when aggregated over large regions. Therefore we believe the largest uncertainties for REDD+ activities relate to the spatial distribution of biomass and to the spatial pattern of forest cover change, rather than to total globally or nationally summed carbon density.


Global Change Biology | 2014

Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment

Kevin C. Guay; Pieter S. A. Beck; Logan T. Berner; Scott J. Goetz; Alessandro Baccini; Wolfgang Buermann

Satellite-derived indices of photosynthetic activity are the primary data source used to study changes in global vegetation productivity over recent decades. Creating coherent, long-term records of vegetation activity from legacy satellite data sets requires addressing many factors that introduce uncertainties into vegetation index time series. We compared long-term changes in vegetation productivity at high northern latitudes (>50°N), estimated as trends in growing season NDVI derived from the most widely used global NDVI data sets. The comparison included the AVHRR-based GIMMS-NDVI version G (GIMMSg) series, and its recent successor version 3g (GIMMS3g), as well as the shorter NDVI records generated from the more modern sensors, SeaWiFS, SPOT-VGT, and MODIS. The data sets from the latter two sensors were provided in a form that reduces the effects of surface reflectance associated with solar and view angles. Our analysis revealed large geographic areas, totaling 40% of the study area, where all data sets indicated similar changes in vegetation productivity over their common temporal record, as well as areas where data sets showed conflicting patterns. The newer, GIMMS3g data set showed statistically significant (α = 0.05) increases in vegetation productivity (greening) in over 15% of the study area, not seen in its predecessor (GIMMSg), whereas the reverse was rare (<3%). The latter has implications for earlier reports on changes in vegetation activity based on GIMMSg, particularly in Eurasia where greening is especially pronounced in the GIMMS3g data. Our findings highlight both critical uncertainties and areas of confidence in the assessment of ecosystem-response to climate change using satellite-derived indices of photosynthetic activity. Broader efforts are required to evaluate NDVI time series against field measurements of vegetation growth, primary productivity, recruitment, mortality, and other biological processes in order to better understand ecosystem responses to environmental change over large areas.


PLOS ONE | 2012

Understanding the Impacts of Land-Use Policies on a Threatened Species: Is There a Future for the Bornean Orang-utan?

Serge A. Wich; David Gaveau; Nicola K. Abram; Marc Ancrenaz; Alessandro Baccini; Stephen Brend; Lisa M. Curran; Roberto A. Delgado; Andi Erman; Gabriella Fredriksson; Benoit Goossens; Simon J. Husson; Isabelle Lackman; Andrew J. Marshall; Anita Naomi; Elis Molidena; Nardiyono; Anton Nurcahyo; Kisar Odom; Adventus Panda; Purnomo; Andjar Rafiastanto; Dessy Ratnasari; Adi H. Santana; Imam Sapari; Carel P. van Schaik; Jamartin Sihite; Stephanie N. Spehar; Eddy Santoso; Amat Suyoko

The geographic distribution of Bornean orang-utans and its overlap with existing land-use categories (protected areas, logging and plantation concessions) is a necessary foundation to prioritize conservation planning. Based on an extensive orang-utan survey dataset and a number of environmental variables, we modelled an orang-utan distribution map. The modelled orang-utan distribution map covers 155,106 km2 (21% of Borneos landmass) and reveals four distinct distribution areas. The most important environmental predictors are annual rainfall and land cover. The overlap of the orang-utan distribution with land-use categories reveals that only 22% of the distribution lies in protected areas, but that 29% lies in natural forest concessions. A further 19% and 6% occurs in largely undeveloped oil palm and tree plantation concessions, respectively. The remaining 24% of the orang-utan distribution range occurs outside of protected areas and outside of concessions. An estimated 49% of the orang-utan distribution will be lost if all forest outside of protected areas and logging concessions is lost. To avoid this potential decline plantation development in orang-utan habitats must be halted because it infringes on national laws of species protection. Further growth of the plantation sector should be achieved through increasing yields in existing plantations and expansion of new plantations into areas that have already been deforested. To reach this goal a large scale island-wide land-use masterplan is needed that clarifies which possible land uses and managements are allowed in the landscape and provides new standardized strategic conservation policies. Such a process should make much better use of non-market values of ecosystem services of forests such as water provision, flood control, carbon sequestration, and sources of livelihood for rural communities. Presently land use planning is more driven by vested interests and direct and immediate economic gains, rather than by approaches that take into consideration social equity and environmental sustainability.


Science | 2017

Tropical forests are a net carbon source based on aboveground measurements of gain and loss

Alessandro Baccini; Wayne Walker; L. Carvalho; M. Farina; Damien Sulla-Menashe; R. A. Houghton

Forests out of balance Are tropical forests a net source or net sink of atmospheric carbon dioxide? As fundamental a question as that is, there still is no agreement about the answer, with different studies suggesting that it is anything from a sizable sink to a modest source. Baccini et al. used 12 years of MODIS satellite data to determine how the aboveground carbon density of woody, live vegetation has changed throughout the entire tropics on an annual basis. They find that the tropics are a net carbon source, with losses owing to deforestation and reductions in carbon density within standing forests being double that of gains resulting from forest growth. Science, this issue p. 230 Tropical forests release more CO2 to the atmosphere than they remove from it. The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world’s tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year–1). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year–1 and gains of 436.5 ± 31.0 Tg C year–1. Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change

Naomi M. Levine; Ke Zhang; Marcos Longo; Alessandro Baccini; Oliver L. Phillips; Simon L. Lewis; Esteban Álvarez-Dávila; Ana Andrade; Roel J. W. Brienen; Terry L. Erwin; Ted R. Feldpausch; Abel Monteagudo Mendoza; Percy Núñez Vargas; Adriana Prieto; Javier E. Silva-Espejo; Yadvinder Malhi; Paul R. Moorcroft

Significance Understanding how changes in climate will affect terrestrial ecosystems is particularly important in tropical forest regions, which store large amounts of carbon and exert important feedbacks onto regional and global climates. By combining multiple types of observations with a state-of-the-art terrestrial ecosystem model, we demonstrate that the sensitivity of tropical forests to changes in climate is dependent on the length of the dry season and soil type, but also, importantly, on the dynamics of individual-level competition within plant canopies. These interactions result in ecosystems that are more sensitive to changes in climate than has been predicted by traditional models but that transition from one ecosystem type to another in a continuous, non–tipping-point manner. Amazon forests, which store ∼50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem’s resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest’s response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Reductions in emissions from deforestation from Indonesia’s moratorium on new oil palm, timber, and logging concessions

Jonah Busch; Kalifi Ferretti-Gallon; Jens Engelmann; Max Wright; Kemen G. Austin; Fred Stolle; Svetlana Turubanova; Peter V. Potapov; Belinda Arunarwati Margono; Matthew C. Hansen; Alessandro Baccini

Significance Our paper is significant in a number of respects. First, we expand the literature on quasi-experimental evaluation of the causal impact of conservation measures to include agricultural concessions. Second, our report is rare in that we use panel data and techniques in a literature on spatially explicit land-use change econometrics that has necessarily relied upon cross-sectional analyses because of data-availability constraints. Third, our report is rare among land-use change scenario analyses in that we calibrate the effect of land-use designations empirically, rather than assuming idealized perfect effectiveness of conservation measures or complete conversion without such measures. Finally, we compare the effectiveness of place-based policies with alternative price-based instruments for climate-change mitigation within a globally significant landscape. To reduce greenhouse gas emissions from deforestation, Indonesia instituted a nationwide moratorium on new license areas (“concessions”) for oil palm plantations, timber plantations, and logging activity on primary forests and peat lands after May 2011. Here we indirectly evaluate the effectiveness of this policy using annual nationwide data on deforestation, concession licenses, and potential agricultural revenue from the decade preceding the moratorium. We estimate that on average granting a concession for oil palm, timber, or logging in Indonesia increased site-level deforestation rates by 17–127%, 44–129%, or 3.1–11.1%, respectively, above what would have occurred otherwise. We further estimate that if Indonesia’s moratorium had been in place from 2000 to 2010, then nationwide emissions from deforestation over that decade would have been 241–615 MtCO2e (2.8–7.2%) lower without leakage, or 213–545 MtCO2e (2.5–6.4%) lower with leakage. As a benchmark, an equivalent reduction in emissions could have been achieved using a carbon price-based instrument at a carbon price of

Collaboration


Dive into the Alessandro Baccini's collaboration.

Top Co-Authors

Avatar

Scott J. Goetz

Woods Hole Research Center

View shared research outputs
Top Co-Authors

Avatar

R. A. Houghton

Woods Hole Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne Walker

Woods Hole Research Center

View shared research outputs
Top Co-Authors

Avatar

Mindy Sun

Woods Hole Research Center

View shared research outputs
Top Co-Authors

Avatar

Nadine T. Laporte

Woods Hole Research Center

View shared research outputs
Top Co-Authors

Avatar

Pieter S. A. Beck

Woods Hole Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mutlu Ozdogan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge