Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Battaglia is active.

Publication


Featured researches published by Alessandro Battaglia.


Journal of Atmospheric and Oceanic Technology | 2010

PARSIVEL Snow Observations: A Critical Assessment

Alessandro Battaglia; Elke Rustemeier; Ali Tokay; Ulrich Blahak; Clemens Simmer

The performance of the laser-optical Particle Size Velocity (PARSIVEL) disdrometer is evaluated to determine the characteristics of falling snow. PARSIVEL’s measuring principle is reexamined to detect its limitations and pitfalls when applied to solid precipitation. This study uses snow observations taken during the Canadian Cloudsat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Validation Project (C3VP) campaign, when two PARSIVEL instruments were collocated with a single twodimensional disdrometer (2-DVD), which allows more detailed observation of snowflakes. When characterizing the snowflake size, PARSIVEL instruments inherently retrieve only one size parameter, which is approximately equal to the widest horizontal dimension (more accurately with large snowflakes) and that has no microphysical meaning. Unlike for raindrops, the equivolume PARSIVEL diameter—the PARSIVEL output variable—has no physical counterpart for snowflakes. PARSIVEL’s fall velocity measurement may not be accurate for a single snowflake particle. This is due to the internally assumed relationship between horizontal and vertical snow particle dimensions. The uncertainty originates from the shape-related factor, which tends to depart more and more from unity with increasing snowflake sizes and can produce large errors. When averaging over a large number of snowflakes, the correction factor is size dependent with a systematic tendency to an underestimation of the fall speed (but never exceeding 20%). Compared to a collocated 2-DVD for long-lasting events, PARSIVEL seems to overestimate the number of small snowflakes and large particles. The disagreement between PARSIVEL and 2-DVD snow measurements can only be partly ascribed to PARSIVEL intrinsic limitations (border effects and sizing problems), but it has to deal with the difficulties and drawbacks of both instruments in fully characterizing snow properties.


Journal of the Atmospheric Sciences | 2008

Fast Lidar and Radar Multiple-Scattering Models. Part II: Wide-Angle Scattering Using the Time-Dependent Two-Stream Approximation

Robin J. Hogan; Alessandro Battaglia

Abstract Spaceborne lidar returns from liquid water clouds contain significant contributions from photons that have experienced many wide-angle multiple-scattering events, resulting in returns appearing to originate from far beyond the end of the cloud. A similar effect occurs for spaceborne millimeter-wave radar observations of deep convective clouds. An efficient method is described for calculating the time-dependent returns from such a medium by splitting the photons into those that have taken a near-direct path out to and back from a single backscattering event (in the case of lidar, accounting for small-angle forward scatterings on the way, as described in Part I of this paper) and those that have experienced wide-angle multiple-scattering events. This paper describes the modeling of the latter using the time-dependent two-stream approximation, which reduces the problem to solving a pair of coupled partial differential equations for the energy of the photons traveling toward and away from the instrum...


Journal of Atmospheric and Oceanic Technology | 2009

A Field Study of Reflectivity and Z-R Relations Using Vertically Pointing Radars and Disdrometers

Ali Tokay; Peter Hartmann; Alessandro Battaglia; Kenneth S. Gage; W. L. Clark; Christopher R. Williams

Abstract Observations from a 16-month field study using two vertically pointing radars and a disdrometer at Wallops Island are analyzed to examine the consistency of the multi-instrument observations with respect to reflectivity and Z–R relations. The vertically pointing radars were operated at S and K bands and had a very good agreement in reflectivity at a gate centered on 175 and 177 m above ground level over a variety of storms. This agreement occurred even though the sampling volumes were of different size and even though the S band measured the reflectivity factor directly, whereas the K-band radar deduced it from attenuated K-band measurements. Indeed, the radar agreement in reflectivity at the collocated range gates was superior to that between the disdrometer and either radar. This is attributed in large part to the spatial separation of the disdrometer and radar sample volumes, although the lesser agreement observed in a prior collocated disdrometer–disdrometer comparison suggests the larger siz...


IEEE Transactions on Geoscience and Remote Sensing | 2008

How Does Multiple Scattering Affect the Spaceborne W-Band Radar Measurements at Ranges Close to and Crossing the Sea-Surface Range?

Alessandro Battaglia; Clemens Simmer

A radar simulator capable of treating multiple-breakscattering effects has been upgraded to include the interaction with a Kirchoff surface, which realistically reproduces the effect of water surfaces. Multiple-scattering effects explain in a straightforward way some peculiar features of the first images delivered by the 94-GHz cloud-profiling radar onboard the CloudSat, overpassing precipitating systems. The reflectivity profiles without the usual peaks at surface range are found to be distinctive signatures of strong multiple scattering. Moreover, multiple scattering is responsible for producing long signal tails at apparent ranges far below the surface with a strong sensitivity on the microphysical assumptions of the icy segment of the cloud. The estimates of multiple-scattering enhancement at surface and close to the surface range and the saturation levels for simplified precipitating profiles for both CloudSat and EarthCARE configurations are provided.


Journal of Atmospheric and Oceanic Technology | 2008

Effects of Multiple Scattering on Attenuation-Based Retrievals of Stratiform Rainfall from CloudSat

Sergey Y. Matrosov; Alessandro Battaglia; Peter Rodriguez

An attenuation-based method to retrieve vertical profiles of rainfall rates from height derivatives/ gradients of CloudSat nadir-pointing W-band reflectivity measurements is discussed. This method takes advantage of the high attenuation of W-band frequency signals in rain and the low variability of nonattenuated reflectivity due to strong non-Rayleigh scattering from rain drops. The retrieval uncertainties could reach 40%–50%. The suggested method is generally applicable to rainfall rates (R) in an approximate range from about 2–3 to about 20–25 mm h 1 . Multiple scattering noticeably affects the gradients of CloudSat measurements for R values greater than about 5 mm h 1 . To avoid a retrieval bias caused by multiple-scattering effects, a special correction for retrievals is introduced. For rainfall rates greater than about 25 mm h 1 , the influence of multiple scattering gets overwhelming, and the retrievals become problematic, especially for rainfalls with higher freezing-level altitudes. The attenuation-based retrieval method was applied to experimental data from CloudSat covering the range of rainfall rates. CloudSat retrievals were compared to the rainfall estimates available from a National Weather Service ground-based scanning precipitation radar operating at S band. Comparisons between spaceborne and conventional radar rainfall retrievals were generally in good agreement and indicated the mutual consistency of both quantitative precipitation estimate types. The suggested CloudSat rainfall retrieval method is immune to the absolute calibration of the radar and to attenuation caused by the melting layer and snow regions. Since it does not require surface returns, it is applicable to measurements above both land and water surfaces.


Journal of Applied Meteorology and Climatology | 2006

Evaluation of Radar Multiple-Scattering Effects from a GPM Perspective. Part I: Model Description and Validation

Alessandro Battaglia; M. O. Ajewole; Clemens Simmer

Abstract A numerical model based on the Monte Carlo solution of the vector radiative transfer equation has been adopted to simulate radar signals. The model accounts for general radar configurations such as airborne/spaceborne/ground based and monostatic/bistatic and includes the polarization and the antenna pattern as particularly relevant features. Except for contributions from the backscattering enhancement, the model is particularly suitable for evaluating multiple-scattering effects. It has been validated against some analytical methods that provide solutions for the first and second order of scattering of the copolar intensity for pencil-beam/Gaussian antennas in the transmitting/receiving segment. The model has been applied to evaluate the multiple scattering when penetrating inside a uniform hydrometeor layer. In particular, the impact of the phase function, the range-dependent scattering optical thickness, and the effects of the antenna footprint are considered.


Journal of Applied Meteorology and Climatology | 2006

Evaluation of Radar Multiple-Scattering Effects from a GPM Perspective. Part II: Model Results

Alessandro Battaglia; M. O. Ajewole; Clemens Simmer

Abstract Multiple-scattering effects as sensed by radars in configurations useful in the context of the Global Precipitation Mission (GPM) are evaluated for a range of meteorological profiles extracted from four different cloud-resolving model simulations. The multiple-scattering effects are characterized in terms of both the reflectivity enhancement and the linear depolarization ratio. When considering the copolarized reflectivity in spaceborne configurations, the multiple-scattering enhancement becomes a real issue for Ka-band radars, though it is generally negligible at the Ku band, except in meteorologically important situations such as when high rain rates and a considerable amount of ice are present aloft. At Ka band it can reach tens of decibels when systems of heavy cold rain are considered, that is, profiles that include rain layers with high-density ice particles aloft. On the other hand, particularly at 35 GHz, high values of the linear depolarization ratio are predicted even in airborne config...


Journal of Quantitative Spectroscopy & Radiative Transfer | 1999

LIGHT SCATTERING BY GAUSSIAN PARTICLES : RAYLEIGH-ELLIPSOID APPROXIMATION

Alessandro Battaglia; Karri Muinonen; Timo Nousiainen; Jouni I. Peltoniemi

Abstract We study absorption and scattering by irregularly shaped Gaussian random particles in the Rayleigh-ellipsoid approximation. For a given sample shape, we determine the best-fitting ellipsoid as the equal-volume ellipsoid with the largest volume overlapping the sample shape. We present an efficient method for calculating such ellipsoids for Gaussian particles and characterize the goodness of the approximation with the complementary volume. We study the scattering properties of Gaussian particles much smaller than the wavelength with different complex refractive indices, comparing the Rayleigh-ellipsoid approximation to the Rayleigh-volume, discrete-dipole, and second-order perturbation approximations, and to the computations using the variational volume integral equation method. Our new method can prove valuable in microwave remote sensing of terrestrial ice clouds: crystalline structures are often elongated with dimensions in the Rayleigh domain for typical radar frequencies.


Journal of Geophysical Research | 2015

Multiple scattering in observations of the GPM dual-frequency precipitation radar: Evidence and impact on retrievals

Alessandro Battaglia; Simone Tanelli; Kamil Mroz; Frederick Tridon

Abstract This paper illustrates how multiple scattering signatures affect Global Precipitation Measuring (GPM) Mission Dual‐Frequency Precipitation Radar (DPR) Ku and Ka band reflectivity measurements and how they are consistent with prelaunch assessments based on theoretical considerations and confirmed by airborne observations. In particular, in the presence of deep convection, certain characteristics of the dual‐wavelength reflectivity profiles cannot be explained with single scattering, whereas they are readily explained by multiple‐scattering theory. Examples of such signatures are the absence of surface reflectivity peaks and anomalously small reflectivity slopes in the lower troposphere. These findings are relevant for DPR‐based rainfall retrievals and stratiform/convective classification algorithms when dealing with deep convective regions. A path to refining the rainfall inversion problem is proposed by adopting a methodology based on a forward operator which accounts for multiple scattering. A retrieval algorithm based on this methodology is applied to a case study over Africa, and it is compared to the standard DPR products obtained with the at‐launch version of the standard algorithms.


Journal of Atmospheric and Oceanic Technology | 2014

Evaluation of EarthCARE Cloud Profiling Radar Doppler Velocity Measurements in Particle Sedimentation Regimes

Pavlos Kollias; Simone Tanelli; Alessandro Battaglia; Aleksandra Tatarevic

AbstractThe joint European Space Agency–Japan Aerospace Exploration Agency (ESA–JAXA) Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) mission is scheduled for launch in 2016 and features the first atmospheric Cloud Profiling Radar (CPR) with Doppler capability in space. Here, the uncertainty of the CPR Doppler velocity measurements in cirrus clouds and large-scale precipitation areas is discussed. These regimes are characterized by weak vertical motion and relatively horizontally homogeneous conditions and thus represent optimum conditions for acquiring high-quality CPR Doppler measurements. A large dataset of radar reflectivity observations from ground-based radars is used to examine the homogeneity of the cloud fields at the horizontal scales of interest. In addition, a CPR instrument model that uses as input ground-based radar observations and outputs simulations of CPR Doppler measurements is described. The simulator accurately accounts for the beam geometry, nonuniform beam-filling, and sig...

Collaboration


Dive into the Alessandro Battaglia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simone Tanelli

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

F. Tridon

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Kamil Mroz

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin J. Hogan

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. O. Ajewole

Federal University of Technology Akure

View shared research outputs
Researchain Logo
Decentralizing Knowledge