Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Bellofiore is active.

Publication


Featured researches published by Alessandro Bellofiore.


Annals of Biomedical Engineering | 2013

Methods for Measuring Right Ventricular Function and Hemodynamic Coupling with the Pulmonary Vasculature

Alessandro Bellofiore; Naomi C. Chesler

The right ventricle (RV) is a pulsatile pump, the efficiency of which depends on proper hemodynamic coupling with the compliant pulmonary circulation. The RV and pulmonary circulation exhibit structural and functional differences with the more extensively investigated left ventricle (LV) and systemic circulation. In light of these differences, metrics of LV function and efficiency of coupling to the systemic circulation cannot be used without modification to characterize RV function and efficiency of coupling to the pulmonary circulation. In this article, we review RV physiology and mechanics, established and novel methods for measuring RV function and hemodynamic coupling, and findings from application of these methods to RV function and coupling changes with pulmonary hypertension. We especially focus on non-invasive measurements, as these may represent the future for clinical monitoring of disease progression and the effect of drug therapies.


International Journal of Cardiology | 2016

Imaging right ventricular function to predict outcome in pulmonary arterial hypertension

Melanie J. Brewis; Alessandro Bellofiore; Rebecca R. Vanderpool; Naomi C. Chesler; Martin Johnson; Robert Naeije; Andrew J. Peacock

BACKGROUND Right ventricular (RV) function is a major determinant of outcome in pulmonary arterial hypertension (PAH). However, uncertainty persists about the optimal method of evaluation. METHODS We measured RV end-systolic and end-diastolic volumes (ESV and EDV) using cardiac magnetic resonance imaging and RV pressures during right heart catheterization in 140 incident PAH patients and 22 controls. A maximum RV pressure (Pmax) was calculated from the nonlinear extrapolations of early and late systolic portions of the RV pressure curve. The gold standard measure of RV function adaptation to afterload, or RV-arterial coupling (Ees/Ea) was estimated by the stroke volume (SV)/ESV ratio (volume method) or as Pmax/mean pulmonary artery pressure (mPAP) minus 1 (pressure method) (n=84). RV function was also assessed by ejection fraction (EF), right atrial pressure (RAP) and SV. RESULTS Higher Ea and RAP, and lower compliance, SV and EF predicted outcome at univariate analysis. Ees/Ea estimated by the pressure method did not predict outcome but Ees/Ea estimated by the volume method (SV/ESV) did. At multivariate analysis, only SV/ESV and EF were independent predictors of outcome. Survival was poorer in patients with a fall in EF or SV/ESV during follow-up (n=44, p=0.008). CONCLUSION RV function to predict outcome in PAH is best evaluated by imaging derived SV/ESV or EF. In this study, there was no added value of invasive measurements or simplified pressure-derived estimates of RV-arterial coupling.


Annals of Biomedical Engineering | 2013

Impact of Acute Pulmonary Embolization on Arterial Stiffening and Right Ventricular Function in Dogs

Alessandro Bellofiore; Alejandro Roldán-Alzate; Matthieu Besse; Heidi B. Kellihan; D. Consigny; Christopher J. François; Naomi C. Chesler

Pulmonary hypertension (PH) can impact right ventricular (RV) function and alter pulmonary artery (PA) stiffness. The response of the RV to an acute increase in pulmonary pressure is unclear. In addition, the relation between total pulmonary arterial compliance and local PA stiffness has not been investigated. We used a combination of right heart catheterization (RHC) and magnetic resonance imaging (MRI) to assess PA stiffening and RV function in dogs before and after acute embolization. We hypothesized that in moderate, acute PH the RV is able to compensate for increased afterload, maintaining adequate coupling. Also, we hypothesized that in the absence of PA remodeling the relative area change in the proximal PA (RAC, a noninvasive index of local area strain) correlates with the total arterial compliance (stroke volume-to-pulse pressure ratio). Our results indicate that, after embolization, RV function is able to accommodate the demand for increased stroke work without uncoupling, albeit at the expense of a reduction of efficiency. In this acute model, RAC showed excellent correlation with total arterial compliance. We used this correlation to assess PA pulse pressure (PP) from noninvasive MRI measurements of stroke volume and RAC. We demonstrated that in acute pulmonary embolism MRI estimates of PP are remarkably close to measurements from RHC. These results, if confirmed in chronic PH and clinically, suggest that monitoring of PH progression by noninvasive methods may be possible.


Journal of Biomechanics | 2014

Pulmonary artery relative area change is inversely related to ex vivo measured arterial elastic modulus in the canine model of acute pulmonary embolization

Lian Tian; Heidi B. Kellihan; Joseph Henningsen; Alessandro Bellofiore; Omid Forouzan; Alejandro Roldán-Alzate; D. Consigny; McLean Gunderson; Seth H. Dailey; Christopher J. François; Naomi C. Chesler

A low relative area change (RAC) of the proximal pulmonary artery (PA) over the cardiac cycle is a good predictor of mortality from right ventricular failure in patients with pulmonary hypertension (PH). The relationship between RAC and local mechanical properties of arteries, which are known to stiffen in acute and chronic PH, is not clear, however. In this study, we estimated elastic moduli of three PAs (MPA, LPA and RPA: main, left and right PAs) at the physiological state using mechanical testing data and correlated these estimated elastic moduli to RAC measured in vivo with both phase-contrast magnetic resonance imaging (PC-MRI) and M-mode echocardiography (on RPA only). We did so using data from a canine model of acute PH due to embolization to assess the sensitivity of RAC to changes in elastic modulus in the absence of chronic PH-induced arterial remodeling. We found that elastic modulus increased with embolization-induced PH, presumably a consequence of increased collagen engagement, which corresponds well to decreased RAC. Furthermore, RAC was inversely related to elastic modulus. Finally, we found MRI and echocardiography yielded comparable estimates of RAC. We conclude that RAC of proximal PAs can be obtained from either MRI or echocardiography and a change in RAC indicates a change in elastic modulus of proximal PAs detectable even in the absence of chronic PH-induced arterial remodeling. The correlation between RAC and elastic modulus of proximal PAs may be useful for prognoses and to monitor the effects of therapeutic interventions in patients with PH.


Heart | 2017

Reduced haemodynamic coupling and exercise are associated with vascular stiffening in pulmonary arterial hypertension

Alessandro Bellofiore; Eric Dinges; Robert Naeije; Hamorabi Mkrdichian; Lauren Beussink-Nelson; Melissa Bailey; Michael J. Cuttica; Ranya Sweis; James R. Runo; Jon G. Keevil; Christopher J. François; Sanjiv J. Shah; Naomi C. Chesler

Objective Inadequate right ventricular (RV) and pulmonary arterial (PA) functional responses to exercise are important yet poorly understood features of pulmonary arterial hypertension (PAH). This study combined invasive catheterisation with echocardiography to assess RV afterload, RV function and ventricular–vascular coupling in subjects with PAH. Methods Twenty-six subjects with PAH were prospectively recruited to undergo right heart catheterisation and Doppler echocardiography at rest and during incremental exercise, and cardiac MRI at rest. Measurements at rest included basic haemodynamics, RV function and coupling efficiency (η). Measurements during incremental exercise included pulmonary vascular resistance (Z0), characteristic impedance (ZC, a measure of proximal PA stiffness) and proximal and distal PA compliance (CPA). Results In patients with PAH, the proximal PAs were significantly stiffer at maximum exercise (ZC =2.31±0.38 vs 1.33±0.15 WU×m2 at rest; p=0.003) and PA compliance was decreased (CPA=0.88±0.10 vs 1.32±0.17 mL/mm Hg/m2 at rest; p=0.0002). Z0 did not change with exercise. As a result, the resistance–compliance (RC) time decreased with exercise (0.67±0.05 vs 1.00±0.07 s at rest; p<10−6). When patients were grouped according to resting coupling efficiency, those with poorer η exhibited stiffer proximal PAs at rest, a lower maximum exercise level, and more limited CPA reduction at maximum exercise. Conclusions In PAH, exercise causes proximal and distal PA stiffening, which combined with preserved Z0 results in decreased RC time with exercise. Stiff PAs at rest may also contribute to poor haemodynamic coupling, reflecting reduced pulmonary vascular reserve that contributes to limit the maximum exercise level tolerated.


Journal of Biomechanical Engineering-transactions of The Asme | 2015

High-Resolution Measurements of Velocity and Shear Stress in Leakage Jets From Bileaflet Mechanical Heart Valve Hinge Models

Ewa Klusak; Alessandro Bellofiore; Sarah Loughnane; Nathan J. Quinlan

In flow through cardiovascular implants, hemolysis, and thrombosis may be initiated by nonphysiological shear stress on blood elements. To enhance understanding of the small-scale flow structures that stimulate cellular responses, and ultimately to design devices for reduced blood damage, it is necessary to study the flow-field at high spatial and temporal resolution. In this work, we investigate flow in the reverse leakage jet from the hinge of a bileaflet mechanical heart valve (BMHV). Scaled-up model hinges are employed, enabling measurement of the flow-field at effective spatial resolution of 167 μm and temporal resolution of 594 μs using two-component particle image velocimetry (PIV). High-velocity jets were observed at the hinge outflow, with time-average velocity up to 5.7 m/s, higher than reported in previous literature. Mean viscous shear stress is up to 60 Pa. For the first time, strongly unsteady flow has been observed in the leakage jet. Peak instantaneous shear stress is up to 120 Pa, twice as high as the average value. These high-resolution measurements identify the hinge leakage jet as a region of very high fluctuating shear stress which is likely to be thrombogenic and should be an important target for future design improvement.


Journal of Biomechanical Engineering-transactions of The Asme | 2015

A Novel In Vivo Approach to Assess Radial and Axial Distensibility of Large and Intermediate Pulmonary Artery Branches

Alessandro Bellofiore; Joseph Henningsen; C. G. Lepak; Lian Tian; Alejandro Roldán-Alzate; Heidi B. Kellihan; D. Consigny; Chris J. François; Naomi C. Chesler

Pulmonary arteries (PAs) distend to accommodate increases in cardiac output. PA distensibility protects the right ventricle (RV) from excessive increases in pressure. Loss of PA distensibility plays a critical role in the fatal progression of pulmonary arterial hypertension (PAH) toward RV failure. However, it is unclear how PA distensibility is distributed across the generations of PA branches, mainly because of the lack of appropriate in vivo methods to measure distensibility of vessels other than the large, conduit PAs. In this study, we propose a novel approach to assess the distensibility of individual PA branches. The metric of PA distensibility we used is the slope of the stretch ratio-pressure relationship. To measure distensibility, we combined invasive measurements of mean PA pressure with angiographic imaging of the PA network of six healthy female dogs. Stacks of 2D images of the PAs, obtained from either contrast enhanced magnetic resonance angiography (CE-MRA) or computed tomography digital subtraction angiography (CT-DSA), were used to reconstruct 3D surface models of the PA network, from the first bifurcation down to the sixth generation of branches. For each branch of the PA, we calculated radial and longitudinal stretch between baseline and a pressurized state obtained via acute embolization of the pulmonary vasculature. Our results indicated that large and intermediate PA branches have a radial distensibility consistently close to 2%/mmHg. Our axial distensibility data, albeit affected by larger variability, suggested that the PAs distal to the first generation may not significantly elongate in vivo, presumably due to spatial constraints. Results from both angiographic techniques were comparable to data from established phase-contrast (PC) magnetic resonance imaging (MRI) and ex vivo mechanical tests, which can only be used in the first branch generation. Our novel method can be used to characterize PA distensibility in PAH patients undergoing clinical right heart catheterization (RHC) in combination with MRI.


Pulmonary circulation | 2015

What does the time constant of the pulmonary circulation tell us about the progression of right ventricular dysfunction in pulmonary arterial hypertension

Alessandro Bellofiore; Zhijie Wang; Naomi C. Chesler

Compliance (C) and resistance (R) maintain a unique, inverse relationship in the pulmonary circulation, resulting in a constant characteristic time τ = RC that has been observed in healthy subjects as well as patients with pulmonary arterial hypertension (PAH). However, little is known about the dependence of right ventricular (RV) function on the coupled changes in R and C in the context of this inverse relationship. We hypothesized three simple dependencies of RV ejection fraction (RVEF) on R and C. The first model (linear-R) assumes a linear RVEF-R relation; the second (linear-C) assumes a linear RVEF-C relation; and the third one combines the former two in a mixed linear model. We found that the linear-R model and the mixed linear model are in good agreement with clinical evidence. A conclusive validation of these models will require more clinical data. Longitudinal data in particular are needed to identify the time course of ventricular-vascular impairment in PAH. Simple models like the ones we present here, once validated, will advance our understanding of the mechanisms of RV failure, which could improve strategies to manage RV dysfunction in PAH.


Journal of Applied Physiology | 2018

A novel single-beat approach to assess right ventricular systolic function

Alessandro Bellofiore; Rebecca R. Vanderpool; Melanie J. Brewis; Andrew J. Peacock; Naomi C. Chesler

Clinical assessment of right ventricular (RV) contractility in diseases such as pulmonary arterial hypertension (PAH) has been hindered by the lack of a robust methodology. Here, a novel, clinically viable, single-beat method was developed to assess end-systolic elastance (Ees), a measure of right ventricular (RV) contractility. We hypothesized that this novel approach reduces uncertainty and interobserver variability in the estimation of the maximum isovolumic pressure (Piso), the key step in single-beat methods. The new method was designed to include a larger portion of the RV pressure data and minimize subjective adjustments by the operator. Data were obtained from right heart catheterization of PAH patients in a multicenter prospective study ( data set 1) and a single-center retrospective study ( data set 2). To obtain Piso, three independent observers used an established single-beat method (based on the first derivative of the pressure waveform) and the novel method (based on the second derivative). Interobserver variability analysis included paired t-test, one-way ANOVA, interclass correlation (ICC) analysis, and a modified Bland-Altman analysis. The Piso values obtained from the two methods were linearly correlated for both data set 1 ( R2 = 0.74) and data set 2 ( R2 = 0.91). Compared with the established method, the novel method resulted in smaller interobserver variability ( P < 0.001), nonsignificant differences between observers, and a narrower confidence interval. By reducing uncertainty and interobserved variability, this novel approach may pave the way for more effective clinical management of PAH. NEW & NOTEWORTHY A novel methodology to assess right ventricular contractility from clinical data is demonstrated. This approach significantly reduces interobserver variability in the analysis of ventricular pressure data, as demonstrated in a relatively large population of subjects with pulmonary hypertension. This study may enable more accurate clinical monitoring of systolic function in subjects with pulmonary hypertension.


Pulmonary circulation | 2017

Dobutamine stress MRI in pulmonary hypertension: relationships between stress pulmonary artery relative area change, RV performance, and 10-year survival.

Kevin G. Blyth; Alessandro Bellofiore; Geeshath Jayasekera; John E. Foster; Tracey Steedman; Naomi C. Chesler; Andrew J. Peacock

In pulmonary hypertension (PH), right ventricular (RV) performance determines survival. Pulmonary artery (PA) stiffening is an important biomechanical event in PH and also predicts survival based on the PA relative area change (RAC) measured at rest using magnetic resonance imaging (MRI). In this exploratory study, we sought to generate novel hypotheses regarding the influence of stress RAC on PH prognosis and the interaction between PA stiffening, RV performance and survival. Fifteen PH patients underwent dobutamine stress-MRI (ds-MRI) and right heart catheterization. RACREST, RACSTRESS, and ΔRAC (RAC STRESS – RAC REST) were correlated against resting invasive hemodynamics and ds-MRI data regarding RV performance and RV-PA coupling efficiency (n’vv [RV stroke volume/RV end-systolic volume]). The impact of RAC, RV data, and n’vv on ten-year survival were determined using Kaplan–Meier analysis. PH patients with a low ΔRAC (<−2.6%) had a worse long-term survival (log-rank P = 0.045, HR for death = 4.46 [95% CI = 1.08–24.5]) than those with ΔRAC ≥ −2.6%. Given the small sample, these data should be interpreted with caution; however, low ΔRAC was associated with an increase in stress diastolic PA area indicating proximal PA stiffening. Associations of borderline significance were observed between low RACSTRESS and low n’vvSTRESS, Δη’VV, and ΔRVEF. Further studies are required to validate the potential prognostic impact of ΔRAC and the biomechanics potentially connecting low ΔRAC to shorter survival. Such studies may facilitate development of novel PH therapies targeted to the proximal PA.

Collaboration


Dive into the Alessandro Bellofiore's collaboration.

Top Co-Authors

Avatar

Naomi C. Chesler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Nathan J. Quinlan

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Christopher J. François

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Heidi B. Kellihan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Alejandro Roldán-Alzate

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

D. Consigny

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Peacock

Golden Jubilee National Hospital

View shared research outputs
Top Co-Authors

Avatar

Matthieu Besse

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Melanie J. Brewis

Golden Jubilee National Hospital

View shared research outputs
Top Co-Authors

Avatar

Robert Naeije

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge