Alessandro Bertero
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alessandro Bertero.
Nature Biotechnology | 2015
Fotios Sampaziotis; Miguel Cardoso de Brito; Pedro Madrigal; Alessandro Bertero; Kourosh Saeb-Parsy; Filipa Soares; Elisabeth Schrumpf; Espen Melum; Tom H. Karlsen; J. Andrew Bradley; W. Gelson; Susan E. Davies; Alastair Baker; Arthur Kaser; Graeme J. M. Alexander; Nicholas Hannan; Ludovic Vallier
The study of biliary disease has been constrained by a lack of primary human cholangiocytes. Here we present an efficient, serum-free protocol for directed differentiation of human induced pluripotent stem cells into cholangiocyte-like cells (CLCs). CLCs show functional characteristics of cholangiocytes, including bile acids transfer, alkaline phosphatase activity, γ-glutamyl-transpeptidase activity and physiological responses to secretin, somatostatin and vascular endothelial growth factor. We use CLCs to model in vitro key features of Alagille syndrome, polycystic liver disease and cystic fibrosis (CF)-associated cholangiopathy. Furthermore, we use CLCs generated from healthy individuals and patients with polycystic liver disease to reproduce the effects of the drugs verapamil and octreotide, and we show that the experimental CF drug VX809 rescues the disease phenotype of CF cholangiopathy in vitro. Our differentiation protocol will facilitate the study of biological mechanisms controlling biliary development, as well as disease modeling and drug screening.
Nature | 2017
Norah M. E. Fogarty; Afshan McCarthy; Kirsten E. Snijders; Benjamin E. Powell; Nada Kubikova; Paul Blakeley; Rebecca Lea; Kay Elder; Sissy E. Wamaitha; Daesik Kim; Valdone Maciulyte; Jens Kleinjung; Jin-Soo Kim; Dagan Wells; Ludovic Vallier; Alessandro Bertero; James M. A. Turner; Kathy K. Niakan
Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR–Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR–Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.
Genes & Development | 2015
Alessandro Bertero; Pedro Madrigal; Antonella Galli; Nina C. Hubner; Inmaculada Moreno; Deborah J. Burks; Stephanie E. Brown; Roger A. Pedersen; Daniel J. Gaffney; Sasha Mendjan; Siim Pauklin; Ludovic Vallier
Stem cells can self-renew and differentiate into multiple cell types. These characteristics are maintained by the combination of specific signaling pathways and transcription factors that cooperate to establish a unique epigenetic state. Despite the broad interest of these mechanisms, the precise molecular controls by which extracellular signals organize epigenetic marks to confer multipotency remain to be uncovered. Here, we use human embryonic stem cells (hESCs) to show that the Activin-SMAD2/3 signaling pathway cooperates with the core pluripotency factor NANOG to recruit the DPY30-COMPASS histone modifiers onto key developmental genes. Functional studies demonstrate the importance of these interactions for correct histone 3 Lys4 trimethylation and also self-renewal and differentiation. Finally, genetic studies in mice show that Dpy30 is also necessary to maintain pluripotency in the pregastrulation embryo, thereby confirming the existence of similar regulations in vivo during early embryonic development. Our results reveal the mechanisms by which extracellular factors coordinate chromatin status and cell fate decisions in hESCs.
Genes & Development | 2016
Siim Pauklin; Pedro Madrigal; Alessandro Bertero; Ludovic Vallier
Coordination of differentiation and cell cycle progression represents an essential process for embryonic development and adult tissue homeostasis. These mechanisms ultimately determine the quantities of specific cell types that are generated. Despite their importance, the precise molecular interplays between cell cycle machinery and master regulators of cell fate choice remain to be fully uncovered. Here, we demonstrate that cell cycle regulators Cyclin D1-3 control cell fate decisions in human pluripotent stem cells by recruiting transcriptional corepressors and coactivator complexes onto neuroectoderm, mesoderm, and endoderm genes. This activity results in blocking the core transcriptional network necessary for endoderm specification while promoting neuroectoderm factors. The genomic location of Cyclin Ds is determined by their interactions with the transcription factors SP1 and E2Fs, which result in the assembly of cell cycle-controlled transcriptional complexes. These results reveal how the cell cycle orchestrates transcriptional networks and epigenetic modifiers to instruct cell fate decisions.
Nature Medicine | 2017
Fotios Sampaziotis; Alexander Justin; O Tysoe; Stephen J. Sawiak; Edmund Godfrey; Sara Upponi; Richard L. Gieseck; Miguel Cardoso de Brito; Natalie Lie Berntsen; María J Gómez-Vázquez; Daniel Ortmann; Loukia Yiangou; Alexander Ross; Johannes Bargehr; Alessandro Bertero; Mariëlle C. F. Zonneveld; Marianne Terndrup Pedersen; Matthias Pawlowski; Laura Valestrand; Pedro Madrigal; Nikitas Georgakopoulos; Negar Pirmadjid; Gregor Skeldon; John Casey; Wenmiao Shu; Paulina M Materek; Kirsten E. Snijders; Stephanie E. Brown; Casey Rimland; Ingrid Simonic
The treatment of common bile duct (CBD) disorders, such as biliary atresia or ischemic strictures, is restricted by the lack of biliary tissue from healthy donors suitable for surgical reconstruction. Here we report a new method for the isolation and propagation of human cholangiocytes from the extrahepatic biliary tree in the form of extrahepatic cholangiocyte organoids (ECOs) for regenerative medicine applications. The resulting ECOs closely resemble primary cholangiocytes in terms of their transcriptomic profile and functional properties. We explore the regenerative potential of these organoids in vivo and demonstrate that ECOs self-organize into bile duct–like tubes expressing biliary markers following transplantation under the kidney capsule of immunocompromised mice. In addition, when seeded on biodegradable scaffolds, ECOs form tissue-like structures retaining biliary characteristics. The resulting bioengineered tissue can reconstruct the gallbladder wall and repair the biliary epithelium following transplantation into a mouse model of injury. Furthermore, bioengineered artificial ducts can replace the native CBD, with no evidence of cholestasis or occlusion of the lumen. In conclusion, ECOs can successfully reconstruct the biliary tree, providing proof of principle for organ regeneration using human primary cholangiocytes expanded in vitro.
Nature Protocols | 2017
Fotios Sampaziotis; Miguel Cardoso de Brito; Imbisaat Geti; Alessandro Bertero; Nicholas Hannan; Ludovic Vallier
The difficulty in isolating and propagating functional primary cholangiocytes is a major limitation in the study of biliary disorders and the testing of novel therapeutic agents. To overcome this problem, we have developed a platform for the differentiation of human pluripotent stem cells (hPSCs) into functional cholangiocyte-like cells (CLCs). We have previously reported that our 26-d protocol closely recapitulates key stages of biliary development, starting with the differentiation of hPSCs into endoderm and subsequently into foregut progenitor (FP) cells, followed by the generation of hepatoblasts (HBs), cholangiocyte progenitors (CPs) expressing early biliary markers and mature CLCs displaying cholangiocyte functionality. Compared with alternative protocols for biliary differentiation of hPSCs, our system does not require coculture with other cell types and relies on chemically defined conditions up to and including the generation of CPs. A complex extracellular matrix is used for the maturation of CLCs; therefore, experience in hPSC culture and 3D organoid systems may be necessary for optimal results. Finally, the capacity of our platform for generating large amounts of disease-specific functional cholangiocytes will have broad applications for cholangiopathies, in disease modeling and for screening of therapeutic compounds.
Nature | 2018
Alessandro Bertero; Stephanie E. Brown; Pedro Madrigal; Anna Osnato; Daniel Ortmann; Loukia Yiangou; Juned Kadiwala; Nina C. Hubner; Igor Ruiz de los Mozos; Christoph Sadée; An-Sofie Lenaerts; Shota Nakanoh; Rodrigo Grandy; Edward John Farnell; Jernej Ule; Hendrik G. Stunnenberg; Sasha Mendjan; Ludovic Vallier
The TGFβ pathway has essential roles in embryonic development, organ homeostasis, tissue repair and disease. These diverse effects are mediated through the intracellular effectors SMAD2 and SMAD3 (hereafter SMAD2/3), whose canonical function is to control the activity of target genes by interacting with transcriptional regulators. Therefore, a complete description of the factors that interact with SMAD2/3 in a given cell type would have broad implications for many areas of cell biology. Here we describe the interactome of SMAD2/3 in human pluripotent stem cells. This analysis reveals that SMAD2/3 is involved in multiple molecular processes in addition to its role in transcription. In particular, we identify a functional interaction with the METTL3–METTL14–WTAP complex, which mediates the conversion of adenosine to N6-methyladenosine (m6A) on RNA. We show that SMAD2/3 promotes binding of the m6A methyltransferase complex to a subset of transcripts involved in early cell fate decisions. This mechanism destabilizes specific SMAD2/3 transcriptional targets, including the pluripotency factor gene NANOG, priming them for rapid downregulation upon differentiation to enable timely exit from pluripotency. Collectively, these findings reveal the mechanism by which extracellular signalling can induce rapid cellular responses through regulation of the epitranscriptome. These aspects of TGFβ signalling could have far-reaching implications in many other cell types and in diseases such as cancer.
Stem cell reports | 2017
Matthias Pawlowski; Daniel Ortmann; Alessandro Bertero; Joana M. Tavares; Roger A. Pedersen; Ludovic Vallier; Mark R. Kotter
Summary The isolation or in vitro derivation of many human cell types remains challenging and inefficient. Direct conversion of human pluripotent stem cells (hPSCs) by forced expression of transcription factors provides a potential alternative. However, deficient inducible gene expression in hPSCs has compromised efficiencies of forward programming approaches. We have systematically optimized inducible gene expression in hPSCs using a dual genomic safe harbor gene-targeting strategy. This approach provides a powerful platform for the generation of human cell types by forward programming. We report robust and deterministic reprogramming of hPSCs into neurons and functional skeletal myocytes. Finally, we present a forward programming strategy for rapid and highly efficient generation of human oligodendrocytes.
Development | 2016
Alessandro Bertero; Matthias Pawlowski; Daniel Ortmann; Kirsten E. Snijders; Loukia Yiangou; Miguel Cardoso de Brito; Stephanie E. Brown; William G. Bernard; James D. Cooper; Elisa Giacomelli; Laure Gambardella; Nicholas Hannan; Dharini Iyer; Fotios Sampaziotis; Felipe Serrano; Mariëlle C. F. Zonneveld; Sanjay Sinha; Mark R. Kotter; Ludovic Vallier
Inducible loss of gene function experiments are necessary to uncover mechanisms underlying development, physiology and disease. However, current methods are complex, lack robustness and do not work in multiple cell types. Here we address these limitations by developing single-step optimized inducible gene knockdown or knockout (sOPTiKD or sOPTiKO) platforms. These are based on genetic engineering of human genomic safe harbors combined with an improved tetracycline-inducible system and CRISPR/Cas9 technology. We exemplify the efficacy of these methods in human pluripotent stem cells (hPSCs), and show that generation of sOPTiKD/KO hPSCs is simple, rapid and allows tightly controlled individual or multiplexed gene knockdown or knockout in hPSCs and in a wide variety of differentiated cells. Finally, we illustrate the general applicability of this approach by investigating the function of transcription factors (OCT4 and T), cell cycle regulators (cyclin D family members) and epigenetic modifiers (DPY30). Overall, sOPTiKD and sOPTiKO provide a unique opportunity for functional analyses in multiple cell types relevant for the study of human development. Highlighted article: Novel optimized inducible knockdown and knockout platforms are developed and used to assess gene function in human pluripotent stem cells and their differentiated progeny.
Journal of Molecular and Cellular Cardiology | 2018
Andrea Leonard; Alessandro Bertero; Joseph D. Powers; Kevin M. Beussman; Shiv Bhandari; Michael Regnier; Charles E. Murry; Nathan J. Sniadecki
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) grown in engineered heart tissue (EHT) can be used for drug screening, disease modeling, and heart repair. However, the immaturity of hiPSC-CMs currently limits their use. Because mechanical loading increases during development and facilitates cardiac maturation, we hypothesized that afterload would promote maturation of EHTs. To test this we developed a system in which EHTs are suspended between a rigid post and a flexible one, whose resistance to contraction can be modulated by applying braces of varying length. These braces allow us to adjust afterload conditions over two orders of magnitude by increasing the flexible post resistance from 0.09 up to 9.2u202fμN/μm. After three weeks in culture, optical tracking of post deflections revealed that auxotonic twitch forces increased in correlation with the degree of afterload, whereas twitch velocities decreased with afterload. Consequently, the power and work of the EHTs were maximal under intermediate afterloads. When studied isometrically, the inotropy of EHTs increased with afterload up to an intermediate resistance (0.45u202fμN/μm) and then plateaued. Applied afterload increased sarcomere length, cardiomyocyte area and elongation, which are hallmarks of maturation. Furthermore, progressively increasing the level of afterload led to improved calcium handling, increased expression of several key markers of cardiac maturation, including a shift from fetal to adult ventricular myosin heavy chain isoforms. However, at the highest afterload condition, markers of pathological hypertrophy and fibrosis were also upregulated, although the bulk tissue stiffness remained the same for all levels of applied afterload tested. Together, our results indicate that application of moderate afterloads can substantially improve the maturation of hiPSC-CMs in EHTs, while high afterload conditions may mimic certain aspects of human cardiac pathology resulting from elevated mechanical overload.