Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Bertolino is active.

Publication


Featured researches published by Alessandro Bertolino.


Biological Psychiatry | 2001

Prefrontal neurons and the genetics of schizophrenia

Daniel R. Weinberger; Michael F. Egan; Alessandro Bertolino; Joseph H. Callicott; Venkata S. Mattay; Barbara K. Lipska; Karen Faith Berman; Terry E. Goldberg

This article reviews prefrontal cortical biology as it relates to pathophysiology and genetic risk for schizophrenia. Studies of prefrontal neurocognition and functional neuroimaging of prefrontal information processing consistently reveal abnormalities in patients with schizophrenia. Abnormalities of prefrontal information processing also are found in unaffected individuals who are genetically at risk for schizophrenia, suggesting that genetic polymorphisms affecting prefrontal function may be susceptibility alleles for schizophrenia. One such candidate is a functional polymorphism in the catechol-o-methyl transferase (COMT) gene that markedly affects enzyme activity and that appears to uniquely impact prefrontal dopamine. The COMT genotype predicts performance on prefrontal executive cognition and working memory tasks. Functional magnetic resonance imaging confirms that COMT genotype affects prefrontal physiology during working memory. Family-based association studies have revealed excessive transmission to schizophrenic offspring of the allele (val) related to poorer prefrontal function. These various data provide convergent evidence that the COMT val allele increases risk for schizophrenia by virtue of its effect on dopamine-mediated prefrontal information processing-the first plausible mechanism for a genetic effect on normal human cognition and risk for mental illness.


Annals of Neurology | 2002

Dopaminergic modulation of cortical function in patients with Parkinson's disease.

Venkata S. Mattay; Alessandro Tessitore; Joseph H. Callicott; Alessandro Bertolino; Terry E. Goldberg; Thomas N. Chase; Thomas M. Hyde; Daniel R. Weinberger

Patients with idiopathic Parkinsons disease suffer not only from classic motor symptoms, but from deficits in cognitive function, primarily those subserved by the prefrontal cortex as well. The aim of the current study was to investigate the modulatory effects of dopaminergic therapy on neural systems subserving working memory and motor function in patients with Parkinsons disease. Ten patients with stage I and II Parkinsons disease were studied with functional magnetic resonance imaging, during a relatively hypodopaminergic state (ie, 12 hours after a last dose of dopamimetic treatment), and again during a dopamine‐replete state. Functional magnetic resonance imaging was performed under three conditions: a working memory task, a cued sensorimotor task and rest. Consistent with prior data, the cortical motor regions activated during the motor task showed greater activation during the dopamine‐replete state; however, the cortical regions subserving working memory displayed greater activation during the hypodopaminergic state. Interestingly, the increase in cortical activation during the working memory task in the hypodopaminergic state positively correlated with errors in task performance, and the increased activation in the cortical motor regions during the dopamine‐replete state was positively correlated with improvement in motor function. These results support evidence from basic research that dopamine modulates cortical networks subserving working memory and motor function via two distinct mechanisms: nigrostriatal projections facilitate motor function indirectly via thalamic projections to motor cortices, whereas the mesocortical dopaminergic system facilitates working memory function via direct inputs to prefrontal cortex. The results are also consistent with evidence that the hypodopaminergic state is associated with decreased efficiency of prefrontal cortical information processing and that dopaminergic therapy improves the physiological efficiency of this region.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory

Ying Zhang; Alessandro Bertolino; Leonardo Fazio; Giuseppe Blasi; Antonio Rampino; Raffaella Romano; Mei Ling T Lee; Tao Xiao; Audrey C. Papp; Danxin Wang; Wolfgang Sadee

Subcortical dopamine D2 receptor (DRD2) signaling is implicated in cognitive processes and brain disorders, but the effect of DRD2 variants remains ambiguous. We measured allelic mRNA expression in postmortem human striatum and prefrontal cortex and then performed single nucleotide polymorphism (SNP) scans of the DRD2 locus. A previously uncharacterized promoter SNP (rs12364283) located in a conserved suppressor region was associated with enhanced DRD2 expression, whereas previously studied DRD2 variants failed to affect expression. Moreover, two frequent intronic SNPs (rs2283265 and rs1076560) decreased expression of DRD2 short splice variant (expressed mainly presynaptically) relative to DRD2 long (postsynaptic), a finding reproduced in vitro by using minigene constructs. Being in strong linkage disequilibrium with each other, both intronic SNPs (but not rs12364283) were also associated with greater activity of striatum and prefrontal cortex measured with fMRI during working memory and with reduced performance in working memory and attentional control tasks in healthy humans. Our results identify regulatory DRD2 polymorphisms that modify mRNA expression and splicing and working memory pathways.


Neuropsychopharmacology | 1998

Functional Magnetic Resonance Imaging Brain Mapping in Psychiatry: Methodological Issues Illustrated in a Study of Working Memory in Schizophrenia

Joseph H. Callicott; N.F. Ramsey; K. Tallent; Alessandro Bertolino; Michael B. Knable; Richard Coppola; Terry E. Goldberg; Peter van Gelderen; Venkata S. Mattay; Joseph A. Frank; Chrit Moonen; Daniel R. Weinberger

Functional magnetic resonance imaging (fMRI) is a potential paradigm shift in psychiatric neuroimaging. The technique provides individual, rather than group-averaged, functional neuroimaging data, but subtle methodological confounds represent unique challenges for psychiatric research. As an exemplar of the unique potential and problems of fMRI, we present a study of 10 inpatients with schizophrenia and 10 controls performing a novel “n back” working memory (WM) task. We emphasize two key design steps: (1) the use of an internal activation standard (i.e., a physiological control region) to address activation validity, and (2) the assessment of signal stability to control for “activation” artifacts arising from unequal signal variance across groups. In the initial analysis, all but one of the patients failed to activate dorsolateral prefrontal cortex (DLPFC) during the working memory task. However, some patients (and one control) also tended to show sparse control region activation in spite of normal motor performance, a result that raises doubts about the validity of the initial analysis and concerns about unequal subject motion. Subjects were then matched for signal variance (voxel stability), producing a subset of six patients and six controls. In this comparison, the internal activation standard (i.e., motor activation) was similar in both groups, and five of six patients, including two whom were neuroleptic-naive, failed to activate DLPFC. In addition, a tendency for overactivation of parietal cortex was seen. These results illustrate some of the promise and pitfalls of fMRI. Although fMRI generates individual brain maps, a specialized survey of the data is necessary to avoid spurious or unreliable findings, related to artifacts such as motion, which are likely to be frequent in psychiatric patients.


The Journal of Neuroscience | 2005

Effect of Catechol-O-Methyltransferase val158met Genotype on Attentional Control

Giuseppe Blasi; Venkata S. Mattay; Alessandro Bertolino; Brita Elvevåg; Joseph H. Callicott; Saumitra Das; Bhaskar Kolachana; Michael F. Egan; Terry E. Goldberg; Daniel R. Weinberger

The cingulate cortex is richly innervated by dopaminergic projections and plays a critical role in attentional control (AC). Evidence indicates that dopamine enhances the neurophysiological signal-to-noise ratio and that dopaminergic tone in the frontal cortex is critically dependent on catechol-O-methyltransferase (COMT). A functional polymorphism (val158met) in the COMT gene accounts for some of the individual variability in executive function mediated by the dorsolateral prefrontal cortex. We explored the effect of this genetic polymorphism on cingulate engagement during a novel AC task. We found that the COMT val158met polymorphism also affects the function of the cingulate during AC. Individuals homozygous for the high-activity valine (“val”) allele show greater activity and poorer performance than val/methionine (“met”) heterozygotes, who in turn show greater activity and poorer performance than individuals homozygous for the low-activity met allele, and these effects are most evident at the highest demand for AC. These results indicate that met allele load and presumably enhanced dopaminergic tone improve the “efficiency” of local circuit processing within the cingulate cortex and thereby its function during AC.


NeuroImage | 2000

Effects of dextroamphetamine on cognitive performance and cortical activation.

Venkata S. Mattay; Joseph H. Callicott; Alessandro Bertolino; Ian Heaton; Joseph A. Frank; Richard Coppola; Karen Faith Berman; Terry E. Goldberg; Daniel R. Weinberger

Monoaminergic neurotransmitters are known to have modulatory effects on cognition and on neurophysiological function in the cortex. The current study was performed with BOLD fMRI to examine physiological correlates of the effects of dextroamphetamine on working-memory performance in healthy controls. In a group analysis dextroamphetamine increased BOLD signal in the right prefrontal cortex during a task with increasing working-memory load that approached working-memory capacity. However, the effect of dextroamphetamine on performance and on signal change varied across individuals. Dextroamphetamine improved performance only in those subjects who had relatively low working-memory capacity at baseline, whereas in the subjects who had high working-memory capacity at baseline, it worsened performance. In subjects whose performance deteriorated, signal change was greater than that in subjects who had an improvement in performance, and these variations were correlated (Spearman rho = 0.89, P<0.02). These data shed light on the manner in which monoaminergic tone, working memory, and prefrontal function interact and, moreover, demonstrate that even in normal subjects the behavioral and neurophysiologic effects of dextroamphetamine are not homogeneous. These heterogeneic effects of dextroamphetamine may be explained by genetic variations that interact with the effects of dextroamphetamine.


The Journal of Neuroscience | 2006

Additive Effects of Genetic Variation in Dopamine Regulating Genes on Working Memory Cortical Activity in Human Brain

Alessandro Bertolino; Giuseppe Blasi; Valeria Latorre; Valeria Rubino; Antonio Rampino; Lorenzo Sinibaldi; Grazia Caforio; Vittoria Petruzzella; Antonio Pizzuti; Tommaso Scarabino; Marcello Nardini; Daniel R. Weinberger; Bruno Dallapiccola

Functional polymorphisms in the catechol-O-methyltransferase (COMT) and the dopamine transporter (DAT) genes modulate dopamine inactivation, which is crucial for determining neuronal signal-to-noise ratios in prefrontal cortex during working memory. We show that the COMT Met158 allele and the DAT 3′ variable number of tandem repeat 10-repeat allele are independently associated in healthy humans with more focused neuronal activity (as measured with blood oxygen level-dependent functional magnetic resonance imaging) in the working memory cortical network, including the prefrontal cortex. Moreover, subjects homozygous for the COMT Met allele and the DAT 10-repeat allele have the most focused response, whereas the COMT Val and the DAT 9-repeat alleles have the least. These results demonstrate additive genetic effects of genes regulating dopamine signaling on specific neuronal networks subserving working memory.


Nature Medicine | 2009

A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia

Stephen J. Huffaker; Jingshan Chen; Feng Yang; Venkata S. Mattay; Barbara K. Lipska; Thomas M. Hyde; Jian Song; Dan Rujescu; Ina Giegling; Karine Mayilyan; Morgan J. Proust; Armen Soghoyan; Grazia Caforio; Joseph H. Callicott; Alessandro Bertolino; Andreas Meyer-Lindenberg; Jay Chang; Yuanyuan Ji; Michael F. Egan; Terry E. Goldberg; Joel E. Kleinman; Bai Lu; Daniel R. Weinberger

Organized neuronal firing is crucial for cortical processing and is disrupted in schizophrenia. Using rapid amplification of 5′ complementary DNA ends in human brain, we identified a primate-specific isoform (3.1) of the ether-a-go-go–related K+ channel KCNH2 that modulates neuronal firing. KCNH2-3.1 messenger RNA levels are comparable to full-length KCNH2 (1A) levels in brain but three orders of magnitude lower in heart. In hippocampus from individuals with schizophrenia, KCNH2-3.1 expression is 2.5-fold greater than KCNH2-1A expression. A meta-analysis of five clinical data sets (367 families, 1,158 unrelated cases and 1,704 controls) shows association of single nucleotide polymorphisms in KCNH2 with schizophrenia. Risk-associated alleles predict lower intelligence quotient scores and speed of cognitive processing, altered memory-linked functional magnetic resonance imaging signals and increased KCNH2-3.1 mRNA levels in postmortem hippocampus. KCNH2-3.1 lacks a domain that is crucial for slow channel deactivation. Overexpression of KCNH2-3.1 in primary cortical neurons induces a rapidly deactivating K+ current and a high-frequency, nonadapting firing pattern. These results identify a previously undescribed KCNH2 channel isoform involved in cortical physiology, cognition and psychosis, providing a potential new therapeutic drug target.


Biological Psychiatry | 2006

Prefrontal-hippocampal coupling during memory processing is modulated by COMT val158met genotype.

Alessandro Bertolino; Valeria Rubino; Giuseppe Blasi; Valeria Latorre; Leonardo Fazio; Grazia Caforio; Vittoria Petruzzella; Bhaskar Kolachana; Ahmad R. Hariri; Andreas Meyer-Lindenberg; Marcello Nardini; Daniel R. Weinberger; Tommaso Scarabino

BACKGROUND Studies in humans and in animals have demonstrated that a network of brain regions is involved in performance of declarative and recognition memory tasks. This network includes the hippocampal formation (HF) as well as the ventrolateral prefrontal cortex (VLPFC). Studies in animals have suggested that the relationship between these brain regions is strongly modulated by dopamine. METHODS Using fMRI in healthy humans matched for a series of demographic and genetic variables, we studied the effect of the COMT val158met polymorphism on function of HF and VLPFC as well as on their functional coupling during recognition memory. RESULTS The COMT Val allele was associated with: relatively poorer performance at retrieval; reduced recruitment of neuronal resources in HF and increased recruitment in VLPFC during both encoding and retrieval; and unfavorable functional coupling between these two regions at retrieval. Moreover, functional coupling during retrieval was predictive of behavioral accuracy. CONCLUSIONS These results shed new light on individual differences in responsivity and connectivity between HF and VLPFC related to genetic modulation of dopamine, a mechanism accounting at least in part for individual differences in recognition memory performance.


Biological Psychiatry | 2003

Neuronal pathology in the hippocampal area of Patients with bipolar disorder: A study with proton magnetic resonance spectroscopic imaging

Alessandro Bertolino; Mark A. Frye; Joseph H. Callicott; Venkata S. Mattay; Rebecca Rakow; Jennifer Shelton-Repella; Robert M. Post; Daniel R. Weinberger

BACKGROUND The brain regions involved in the pathophysiology of bipolar disorder have not been definitively determined. Previous studies have suggested possible involvement of the hippocampus and of prefrontal regions. Proton magnetic resonance spectroscopic imaging ((1)H-MRSI) allows measurement of N-acetylaspartate (NAA, marker of neuronal integrity), choline-containing compounds (CHO), and creatine+phosphocreatine (CRE) in multiple brain regions. The objective of this study was to assess possible NAA reductions in hippocampus and prefrontal regions in patients with bipolar disorder. METHODS We studied 17 patients with bipolar disorder and 17 age- and gender-matched healthy subjects on a 1.5-T nuclear magnetic resonance (NMR) machine. With (1)H-MRSI we measured ratios of areas under the metabolite peaks of the proton spectra (i.e., NAA/CRE, NAA/CHO, CHO/CRE) for multiple cortical and subcortical regions. RESULTS Patients showed significant reductions of NAA/CRE bilaterally in the hippocampus. There were no significant changes in CHO/CRE or in NAA ratios in any other area sampled. CONCLUSIONS This study shows that patients with bipolar disorder have a regional reduction of NAA relative signals, suggesting neuronal damage or malfunction of the hippocampus. As suggested by other studies, neuronal pathology in the hippocampus may be involved in the pathophysiology of bipolar disorder and in susceptibility to psychosis.

Collaboration


Dive into the Alessandro Bertolino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annabella Di Giorgio

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar

Teresa Popolizio

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph H. Callicott

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge