Alessandro Cannavale
Instituto Politécnico Nacional
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alessandro Cannavale.
Langmuir | 2009
Michele Manca; Alessandro Cannavale; Luisa De Marco; Antonino S. Aricò; Roberto Cingolani; Giuseppe Gigli
We present a robust and cost-effective coating method to fabricate long-term durable superhydrophobic andsimultaneouslyantireflective surfaces by a double-layer coating comprising trimethylsiloxane (TMS) surface-functionalized silica nanoparticles partially embedded into an organosilica binder matrix produced through a sol-gel process. A dense and homogeneous organosilica gel layer was first coated onto a glass substrate, and then, a trimethylsilanized nanospheres-based superhydrophobic layer was deposited onto it. After thermal curing, the two layers turned into a monolithic film, and the hydrophobic nanoparticles were permanently fixed to the glass substrate. Such treated surfaces showed a tremendous water repellency (contact angle = 168 degrees ) and stable self-cleaning effect during 2000 h of outdoor exposure. Besides this, nanotextured topology generated by the self-assembled nanoparticles-based top layer produced a fair antireflection effect consisting of more than a 3% increase in optical transmittance.
Energy and Environmental Science | 2015
Alessandro Cannavale; Giles E. Eperon; Pierluigi Cossari; Antonio Abate; Henry J. Snaith; Giuseppe Gigli
Photovoltachromic devices combine photovoltaic and electrochromic behaviours to enable adjustable transparency glazing, where the photovoltaic component supplies the power to drive the coloration. Such stand-alone, self-powered devices are of commercial interest for integration into windows and surfaces of buildings and vehicles. Here, we report for the first time a perovskite-based photovoltachromic device with self-adaptive transparency. This multifunctional device is capable of producing electrical power by solar energy conversion as well as undergoing a chromic transition from neutral-color semi-transparent to dark blue-tinted when irradiated with solar light, without any additional external bias. The combination of semi-transparent perovskite photovoltaic and solid-state electrochromic cells enables fully solid-state photovoltachromic devices with 26% (or 16%) average visible transmittance and 3.7% (or 5.5%) maximum light power conversion efficiency. Upon activating the self-tinting, the average visible transmittance drops to 8.4% (or 5.5%). These results represent a significant step towards the commercialization of photovoltachromic building envelopes.
ACS Applied Materials & Interfaces | 2014
Roberto Giannuzzi; Michele Manca; Luisa De Marco; Maria R. Belviso; Alessandro Cannavale; Teresa Sibillano; Cinzia Giannini; P. Davide Cozzoli; Giuseppe Gigli
The peculiar architecture of a novel class of anisotropic TiO2(B) nanocrystals, which were synthesized by an surfactant-assisted nonaqueous sol-gel route, was profitably exploited to fabricate highly efficient mesoporous electrodes for Li storage. These electrodes are composed of a continuous spongy network of interconnected nanoscale units with a rod-shaped profile that terminates into one or two bulgelike or branch-shaped apexes spanning areas of about 5 × 10 nm(2). This architecture transcribes into a superior cycling performance (a charge capacitance of 222 mAh g(-1) was achieved by a carbon-free TiO2(B)-nanorods-based electrode vs 110 mAh g(-1) exhibited by a comparable TiO2-anatase electrode) and good chemical stability (more than 90% of the initial capacity remains after 100 charging/discharging cycles). Their outstanding lithiation/delithiation capabilities were also exploited to fabricate electrochromic devices that revealed an excellent coloration efficiency (130 cm(2) C(-1) at 800 nm) upon the application of 1.5 V as well as an extremely fast electrochromic switching (coloration time ∼5 s).
Energy and Environmental Science | 2016
Alessandro Cannavale; Pierluigi Cossari; Giles E. Eperon; Silvia Colella; Francesco Fiorito; Giuseppe Gigli; Henry J. Snaith; Andrea Listorti
Re-thinking our relationship with energy resources and environmental equilibrium, towards anthropogenic sustainability, calls for innovative and energetically wise technologies. Smart devices adjusting their optical behaviour depending on the environmental conditions will allow remarkable energy savings. To this end, photoelectrochromic devices (PECDs) have captured, in the last two decades, the interest of many research groups and industrial players worldwide. These devices encompass a dual behavior, being able to generate energy and, concomitantly, deliver a smart optical response. For this reason, they are the ideal skins of future buildings, capable of modulating their behavior in response to changing external stimuli, like sunlight irradiance. PECDs have a wide range of applications, from solar shading in architectural glazing to rear view mirrors in automotives, or avionics. This review article explores the different design concepts standing at the basis of the devices that have appeared so far, shedding light on future perspectives. This work takes into account R&D issues and processing constraints as well as the potential exploitation of emerging solid-state materials promising important technological progress.
Energy and Environmental Science | 2011
Alessandro Cannavale; Michele Manca; Francesco Malara; Luisa De Marco; Roberto Cingolani; Giuseppe Gigli
Driven by the tremendous opportunities offered by dye solar cells technology in terms of building integration, a new generation of smart multifunctional photoelectrochemical cells has the potential to attract the interest of a rapidly growing number of research institutions and industrial companies. Photovoltachromic devices are capable to produce a smart modulation of the optical transmittance and, at the same time, to generate electrical power by means of solar energy conversion. In this work, a specifically designed bifunctional counterelectrode has been realized by depositing a C-shaped platinum frame which bounds a square region occupied by a tungsten oxide (WO3) film onto a transparent conductive substrate. These two regions have been electrically separated to make possible distinct operations on one or both of the available circuits. Such an unconventional counterelectrode makes it possible to achieve a twofold outcome: a smart and fast-responsive control of the optical transmittance and a relatively high photovoltaic conversion efficiency. In particular we investigated the effect of the electrolyte composition on both photoelectrochromic and photovoltaic performances of such devices by systematically tuning the iodide content in the electrolyte. The best result was obtained by filling the cell with an iodine concentration of 0.005 M: a coloration efficiency of 61.10 cm2C−1 at a wavelength of 780 nm and, at the same time, a photovoltaic conversion efficiency of 6.55% have been reported.
Light-Science & Applications | 2017
Giovanni Lerario; Dario Ballarini; Antonio Fieramosca; Alessandro Cannavale; Armando Genco; Federica Mangione; Salvatore Gambino; Lorenzo Dominici; Milena De Giorgi; Giuseppe Gigli; D. Sanvitto
The strong coupling of an excitonic transition with an electromagnetic mode results in composite quasi-particles called exciton polaritons, which have been shown to combine the best properties of their individual components in semiconductor microcavities. However, the physics and applications of polariton flows in organic materials and at room temperature are still unexplored because of the poor photon confinement in such structures. Here, we demonstrate that polaritons formed by the hybridization of organic excitons with a Bloch surface wave are able to propagate for hundreds of microns showing remarkable third-order nonlinear interactions upon high injection density. These findings pave the way for the study of organic nonlinear light–matter fluxes and for a technologically promising route of the realization of dissipation-less on-chip polariton devices operating at room temperature.
ACS Applied Materials & Interfaces | 2014
Alessandro Cannavale; Michele Manca; Luisa De Marco; Roberto Grisorio; Sonia Carallo; Gian Paolo Suranna; Giuseppe Gigli
A photovoltachromic window can potentially act as a smart glass skin which generates electric energy as a common dye-sensitized solar cell and, at the same time, control the incoming energy flux by reacting to even small modifications in the solar radiation intensity. We report here the successful implementation of a novel architecture of a photovoltachromic cell based on an engineered bifunctional counter electrode consisting of two physically separated platinum and tungsten oxide regions, which are arranged to form complementary comb-like patterns. Solar light is partially harvested by a dye-sensitized photoelectrode made on the front glass of the cell which fully overlaps a bifunctional counter electrode made on the back glass. When the cell is illuminated, the photovoltage drives electrons into the electrochromic stripes through the photoelectrochromic circuit and promotes the Li(+) diffusion towards the WO3 film, which thus turns into its colored state: a photocoloration efficiency of 17 cm(2) min(-1) W(-1) at a wavelength of 650 nm under 1.0 sun was reported along with fast response (coloration time <2 s and bleaching time <5 s). A fairly efficient photovoltaic functionality was also retained due to the copresence of the independently switchable micropatterned platinum electrode.
Optics Letters | 2014
Giovanni Lerario; Alessandro Cannavale; Dario Ballarini; Lorenzo Dominici; Milena De Giorgi; Marco Liscidini; Dario Gerace; D. Sanvitto; Giuseppe Gigli
A recent theoretical proposal suggested strong coupling between excitons and Bloch Surface Waves, which are photonic modes that exist at the interface between a truncated photonic crystal, and an ideally semi-infinite dielectric medium. In this work we report on the observation of strong coupling between the Bloch surface wave supported by an inorganic multilayer structure and J-aggregate excitons in an organic semiconductor. The dispersion curves of the resulting polariton modes are investigated by means of angle-resolved attenuated total reflection as well as photoluminescence experiments. The measured Rabi splitting is 290 meV.
Journal of Materials Chemistry C | 2018
Pierluigi Cossari; Marco Pugliese; Salvatore Gambino; Alessandro Cannavale; Vincenzo Maiorano; Giuseppe Gigli; Marco Mazzeo
The integration of energy-saving electrochromic systems with novel functions and features in a single smart multifunctional device promises to achieve remarkable technological advancements for a wide range of consumer products showing more versatility, responsivity to different external inputs, and ability to operate in interactive modes. Here, we report a novel architecture in which a solid-state electrochromic cell and a solid-state organic light emitting diode are fully integrated in a single, highly transparent, solid-state electrochromic OLED device. This multifunctional device is capable of tuning its optical properties such as transmittance (chromic transition) and of producing light by electroluminescence, simultaneously or independently. The rational design of the solid-state electrochromic cell and the highly transparent OLED enables the construction of the integrated device in a monolithic unit. In such a structure the photonic architecture of the OLED device not only guarantees high transmittance, but, operating synergically with the electrochromic component, it outperforms the optical properties and electrochromic responses by the interference phenomenon, achieveing an optical contrast of 57% (ΔTbleaching/colouring @ 650 nm), and a coloration efficiency of 169 cm2 C−1, with very low energy consumption (80 mW cm−2). The OLED component exhibits luminance above the minimum values required for display and lighting applications, which are 300 cd m−2 and above 800 cd m−2, respectively. This result represents a further step towards the development of next-generation multifunctional EC devices such as full solid-state photoelectrochromic devices, and, importantly, this can open the way for new electrochromic “smart” window systems such as retail display windows or display EC glasses for augmented reality.
Proceedings of SPIE | 2014
Dario Ballarini; M. De Giorgi; Giovanni Lerario; Alessandro Cannavale; E. Cancellieri; Alberto Bramati; Giuseppe Gigli; Fabrice P. Laussy; D. Sanvitto
Exciton-polaritons, composite particles resulting from the strong coupling between excitons and photons, have shown the capability to undergo condensation into a macroscopically coherent quantum state, demonstrating strong non-linearities and unique propagation properties. These strongly-coupled light-matter particles are promising candidates for the realization of semiconductor all-optical devices with fast time response and small energy consumption. Recently, quantum fluids of polaritons have been used to demonstrate the possibility to implement optical functionalities as spin switches, transistors or memories, but also to provide a channel for the transmission of information inside integrated circuits. In this context, the possibility to extend the range of light-matter interaction up to room temperature becomes of crucial importance. One of the most intriguing promises is to use organic Frenkel excitons, which, thanks to their huge oscillator strength, not only sustain the polariton picture at room temperature, but also bring the system into the unexplored regime of ultra-strong coupling. The combination of these materials with ad-hoc designed structures may allow the control of the propagation properties of polaritons, paving the way towards their implementation of the polariton functionalities in actual devices for opto-electronic applications.