Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Daducci is active.

Publication


Featured researches published by Alessandro Daducci.


PLOS ONE | 2012

The Connectome Mapper: An Open-Source Processing Pipeline to Map Connectomes with MRI

Alessandro Daducci; Stephan Gerhard; Alessandra Griffa; Alia Lemkaddem; Leila Cammoun; Xavier Gigandet; Reto Meuli; Patric Hagmann; Jean-Philippe Thiran

Researchers working in the field of global connectivity analysis using diffusion magnetic resonance imaging (MRI) can count on a wide selection of software packages for processing their data, with methods ranging from the reconstruction of the local intra-voxel axonal structure to the estimation of the trajectories of the underlying fibre tracts. However, each package is generally task-specific and uses its own conventions and file formats. In this article we present the Connectome Mapper, a software pipeline aimed at helping researchers through the tedious process of organising, processing and analysing diffusion MRI data to perform global brain connectivity analyses. Our pipeline is written in Python and is freely available as open-source at www.cmtk.org.


NeuroImage | 2015

Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data

Alessandro Daducci; Erick Jorge Canales-Rodríguez; Hui Zhang; Tim B. Dyrby; Daniel C. Alexander; Jean-Philippe Thiran

Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders.


IEEE Transactions on Medical Imaging | 2014

Quantitative Comparison of Reconstruction Methods for Intra-Voxel Fiber Recovery From Diffusion MRI

Alessandro Daducci; Erick Jorge Canales-Rodríguez; Maxime Descoteaux; Eleftherios Garyfallidis; Yaniv Gur; Ying Chia Lin; Merry Mani; Sylvain Merlet; Michael Paquette; Alonso Ramirez-Manzanares; Marco Reisert; Paulo Reis Rodrigues; Farshid Sepehrband; Emmanuel Caruyer; Jeiran Choupan; Rachid Deriche; Mathews Jacob; Gloria Menegaz; V. Prckovska; Mariano Rivera; Yves Wiaux; Jean-Philippe Thiran

Validation is arguably the bottleneck in the diffusion magnetic resonance imaging (MRI) community. This paper evaluates and compares 20 algorithms for recovering the local intra-voxel fiber structure from diffusion MRI data and is based on the results of the “HARDI reconstruction challenge” organized in the context of the “ISBI 2012” conference. Evaluated methods encompass a mixture of classical techniques well known in the literature such as diffusion tensor, Q-Ball and diffusion spectrum imaging, algorithms inspired by the recent theory of compressed sensing and also brand new approaches proposed for the first time at this contest. To quantitatively compare the methods under controlled conditions, two datasets with known ground-truth were synthetically generated and two main criteria were used to evaluate the quality of the reconstructions in every voxel: correct assessment of the number of fiber populations and angular accuracy in their orientation. This comparative study investigates the behavior of every algorithm with varying experimental conditions and highlights strengths and weaknesses of each approach. This information can be useful not only for enhancing current algorithms and develop the next generation of reconstruction methods, but also to assist physicians in the choice of the most adequate technique for their studies.


Frontiers in Neuroinformatics | 2011

The connectome viewer toolkit: an open source framework to manage, analyze, and visualize connectomes

Stephan Gerhard; Alessandro Daducci; Alia Lemkaddem; Reto Meuli; Jean-Philippe Thiran; Patric Hagmann

Advanced neuroinformatics tools are required for methods of connectome mapping, analysis, and visualization. The inherent multi-modality of connectome datasets poses new challenges for data organization, integration, and sharing. We have designed and implemented the Connectome Viewer Toolkit – a set of free and extensible open source neuroimaging tools written in Python. The key components of the toolkit are as follows: (1) The Connectome File Format is an XML-based container format to standardize multi-modal data integration and structured metadata annotation. (2) The Connectome File Format Library enables management and sharing of connectome files. (3) The Connectome Viewer is an integrated research and development environment for visualization and analysis of multi-modal connectome data. The Connectome Viewers plugin architecture supports extensions with network analysis packages and an interactive scripting shell, to enable easy development and community contributions. Integration with tools from the scientific Python community allows the leveraging of numerous existing libraries for powerful connectome data mining, exploration, and comparison. We demonstrate the applicability of the Connectome Viewer Toolkit using Diffusion MRI datasets processed by the Connectome Mapper. The Connectome Viewer Toolkit is available from http://www.cmtk.org/


Nature Communications | 2017

The challenge of mapping the human connectome based on diffusion tractography

Klaus H. Maier-Hein; Peter F. Neher; Jean-Christophe Houde; Marc-Alexandre Côté; Eleftherios Garyfallidis; Jidan Zhong; Maxime Chamberland; Fang-Cheng Yeh; Ying-Chia Lin; Qing Ji; Wilburn E. Reddick; John O. Glass; David Qixiang Chen; Yuanjing Feng; Chengfeng Gao; Ye Wu; Jieyan Ma; H. Renjie; Qiang Li; Carl-Fredrik Westin; Samuel Deslauriers-Gauthier; J. Omar Ocegueda González; Michael Paquette; Samuel St-Jean; Gabriel Girard; Francois Rheault; Jasmeen Sidhu; Chantal M. W. Tax; Fenghua Guo; Hamed Y. Mesri

Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. Here, we report the encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent). However, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups. Taken together, our results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction based on orientation information alone, which need to be considered when interpreting tractography and connectivity results. Our approach provides a novel framework for estimating reliability of tractography and encourages innovation to address its current limitations.Though tractography is widely used, it has not been systematically validated. Here, authors report results from 20 groups showing that many tractography algorithms produce both valid and invalid bundles.


IEEE Transactions on Medical Imaging | 2015

COMMIT: Convex Optimization Modeling for Microstructure Informed Tractography

Alessandro Daducci; Alessandro Dal Palù; Alia Lemkaddem; Jean-Philippe Thiran

Tractography is a class of algorithms aiming at in vivo mapping the major neuronal pathways in the white matter from diffusion magnetic resonance imaging (MRI) data. These techniques offer a powerful tool to noninvasively investigate at the macroscopic scale the architecture of the neuronal connections of the brain. However, unfortunately, the reconstructions recovered with existing tractography algorithms are not really quantitative even though diffusion MRI is a quantitative modality by nature. As a matter of fact, several techniques have been proposed in recent years to estimate, at the voxel level, intrinsic microstructural features of the tissue, such as axonal density and diameter, by using multicompartment models. In this paper, we present a novel framework to reestablish the link between tractography and tissue microstructure. Starting from an input set of candidate fiber-tracts, which are estimated from the data using standard fiber-tracking techniques, we model the diffusion MRI signal in each voxel of the image as a linear combination of the restricted and hindered contributions generated in every location of the brain by these candidate tracts. Then, we seek for the global weight of each of them, i.e., the effective contribution or volume, such that they globally fit the measured signal at best. We demonstrate that these weights can be easily recovered by solving a global convex optimization problem and using efficient algorithms. The effectiveness of our approach has been evaluated both on a realistic phantom with known ground-truth and in vivo brain data. Results clearly demonstrate the benefits of the proposed formulation, opening new perspectives for a more quantitative and biologically plausible assessment of the structural connectivity of the brain.


NeuroImage: Clinical | 2015

An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease

Daniel Schmitter; Alexis Roche; Bénédicte Maréchal; Delphine Ribes; Ahmed Abdulkadir; Meritxell Bach-Cuadra; Alessandro Daducci; Cristina Granziera; Stefan Klöppel; Philippe Maeder; Reto Meuli; Gunnar Krueger

Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimers disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimers Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimers disease.


Neurology | 2012

A new early and automated MRI-based predictor of motor improvement after stroke

Cristina Granziera; Alessandro Daducci; Djalel Eddine Meskaldji; Alexis Roche; Philippe Maeder; Patrik Michel; Nouchine Hadjikhani; A. Gregory Sorensen; Richard S. J. Frackowiak; Jean-Philippe Thiran; Reto Meuli; Gunnar Krueger

Objectives: In this study, we investigated the structural plasticity of the contralesional motor network in ischemic stroke patients using diffusion magnetic resonance imaging (MRI) and explored a model that combines a MRI-based metric of contralesional network integrity and clinical data to predict functional outcome at 6 months after stroke. Methods: MRI and clinical examinations were performed in 12 patients in the acute phase, at 1 and 6 months after stroke. Twelve age- and gender-matched controls underwent 2 MRIs 1 month apart. Structural remodeling after stroke was assessed using diffusion MRI with an automated measurement of generalized fractional anisotropy (GFA), which was calculated along connections between contralesional cortical motor areas. The predictive model of poststroke functional outcome was computed using a linear regression of acute GFA measures and the clinical assessment. Results: GFA changes in the contralesional motor tracts were found in all patients and differed significantly from controls (0.001 ≤ p < 0.05). GFA changes in intrahemispheric and interhemispheric motor tracts correlated with age (p ≤ 0.01); those in intrahemispheric motor tracts correlated strongly with clinical scores and stroke sizes (p ≤ 0.001). GFA measured in the acute phase together with a routine motor score and age were a strong predictor of motor outcome at 6 months (r2 = 0.96, p = 0.0002). Conclusion: These findings represent a proof of principle that contralesional diffusion MRI measures may provide reliable information for personalized rehabilitation planning after ischemic motor stroke. Neurology® 2012;79:39–46


bioRxiv | 2016

Tractography-based connectomes are dominated by false-positive connections

Klaus H. Maier-Hein; Peter F. Neher; Jean-Christophe Houde; Marc-Alexandre Côté; Eleftherios Garyfallidis; Jidan Zhong; Maxime Chamberland; Fang-Cheng Yeh; Ying Chia Lin; Qing Ji; Wilburn E. Reddick; John O. Glass; David Qixiang Chen; Yuanjing Feng; Chengfeng Gao; Ye Wu; Jieyan Ma; He Renjie; Qiang Li; Carl-Fredrik Westin; Samuel Deslauriers-Gauthier; J. Omar Ocegueda González; Michael Paquette; Samuel St-Jean; Gabriel Girard; Francois Rheault; Jasmeen Sidhu; Chantal M. W. Tax; Fenghua Guo; Hamed Y. Mesri

Fiber tractography based on non-invasive diffusion imaging is at the heart of connectivity studies of the human brain. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain dataset with ground truth white matter tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. While most state-of-the-art algorithms reconstructed 90% of ground truth bundles to at least some extent, on average they produced four times more invalid than valid bundles. About half of the invalid bundles occurred systematically in the majority of submissions. Our results demonstrate fundamental ambiguities inherent to tract reconstruction methods based on diffusion orientation information, with critical consequences for the approach of diffusion tractography in particular and human connectivity studies in general.


PLOS ONE | 2013

Micro-Structural Brain Alterations in Aviremic HIV+ Patients with Minor Neurocognitive Disorders: A Multi-Contrast Study at High Field

Cristina Granziera; Alessandro Daducci; Samanta Simioni; Matthias Cavassini; Alexis Roche; Djalel Eddine Meskaldji; Tobias Kober; Mélanie Métral; Alexandra Calmy; Gunther Helms; Bernard Hirschel; François Lazeyras; Reto Meuli; Gunnar Krueger; Renaud Du Pasquier

Objective Mild neurocognitive disorders (MND) affect a subset of HIV+ patients under effective combination antiretroviral therapy (cART). In this study, we used an innovative multi-contrast magnetic resonance imaging (MRI) approach at high-field to assess the presence of micro-structural brain alterations in MND+ patients. Methods We enrolled 17 MND+ and 19 MND− patients with undetectable HIV-1 RNA and 19 healthy controls (HC). MRI acquisitions at 3T included: MP2RAGE for T1 relaxation times, Magnetization Transfer (MT), T2* and Susceptibility Weighted Imaging (SWI) to probe micro-structural integrity and iron deposition in the brain. Statistical analysis used permutation-based tests and correction for family-wise error rate. Multiple regression analysis was performed between MRI data and (i) neuropsychological results (ii) HIV infection characteristics. A linear discriminant analysis (LDA) based on MRI data was performed between MND+ and MND− patients and cross-validated with a leave-one-out test. Results Our data revealed loss of structural integrity and micro-oedema in MND+ compared to HC in the global white and cortical gray matter, as well as in the thalamus and basal ganglia. Multiple regression analysis showed a significant influence of sub-cortical nuclei alterations on the executive index of MND+ patients (p = 0.04 he and R2 = 95.2). The LDA distinguished MND+ and MND− patients with a classification quality of 73% after cross-validation. Conclusion Our study shows micro-structural brain tissue alterations in MND+ patients under effective therapy and suggests that multi-contrast MRI at high field is a powerful approach to discriminate between HIV+ patients on cART with and without mild neurocognitive deficits.

Collaboration


Dive into the Alessandro Daducci's collaboration.

Top Co-Authors

Avatar

Jean-Philippe Thiran

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

David Romascano

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reto Meuli

University Hospital of Lausanne

View shared research outputs
Top Co-Authors

Avatar

Alia Lemkaddem

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Gabriel Girard

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge