Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Dagnino is active.

Publication


Featured researches published by Alessandro Dagnino.


BMC Genomics | 2011

Interactions of a pesticide/heavy metal mixture in marine bivalves: a transcriptomic assessment

Francesco Dondero; Mohamed Banni; Alessandro Negri; Lara Boatti; Alessandro Dagnino; Aldo Viarengo

BackgroundMixtures of chemicals present in aquatic environments may elicit toxicity due to additive or synergistic effects among the constituents or, vice versa, the adverse outcome may be reduced by antagonistic interactions. Deviations from additivity should be explained either by the perturbations of toxicokinetic parameters and/or chemical toxicodynamics. We addressed this important question in marine mussels exposed subchronically to a binary mixture made of two wide-spread pollutants: the heavy metal nickel and the organic phosphorus pesticide Chlorpyrifos. To this aim, we carried out in tissues of Mytius galloprovincialis (Lam) a systems approach based on the evaluation and integration of different disciplines, i.e. high throughput gene expression profiling, functional genomics, stress biomakers and toxicokinetics.ResultsCellular and tissue biomarkers, viz. digestive gland lysosomal membrane stability, lysosomal/cytosol volume ratio, neutral lipid content and gill acetylcholinesterase activity were, in general, altered by either the exposure to nickel and Chlorpyrifos. However, their joint action rendered (i) an overall decrease of the stress syndrome level, as evaluated through an expert system integrating biomarkers and (ii) statistically significant antagonistic deviations from the reference model systems to predict mixture toxicity. While toxicokinetic modeling did not explain mixture interactions, gene expression profiling and further Gene Ontology-based functional genomics analysis provided clues that the decrement of toxicity may arise from the development of specific toxicodynamics. Multivariate statistics of microarray data (238 genes in total, representing about 14% of the whole microarray catalogue) showed two separate patterns for the single chemicals: the one belonging to the heavy metal -135 differentially expressed genes (DEGs) was characterized by the modulation of transcript levels involved in nucleic acid metabolism, cell proliferation and lipid metabolic processes. Chlorpyrifos exposure (43 DEGs) yielded a molecular signature which was biased towards carbohydrate catabolism (indeed, chitin metabolism) and developmental processes. The exposure to the mixture (103 DEGs) elicited a composite complex profile which encompassed the core properties of the pesticide but also a relevant set of unique features. Finally, the relative mRNA abundance of twelve genes was followed by Q-PCR to either confirm or complement microarray data. These results, in general, were compatible with those from arrays and indeed confirmed the association of the relative abundance of two GM-2 ganglioside activator genes in the development of the hyperlipidosis syndrome observed in digestive gland lysosomes of single chemical exposed mussels.ConclusionThe transcriptomic assessment fitted with biological data to indicate the occurrence of different toxicodynamic events and, in general, a decrease of toxicity, driven by the mitigation or even abolition of lysosomal responses. Furthermore, our results emphasized the importance of the application of mechanistic approaches and the power of systems assessment to study toxicological responses in ecologically relevant organisms.


Ecotoxicology and Environmental Safety | 2010

Acute effects of benzo[a]pyrene on digestive gland enzymatic biomarkers and DNA damage on mussel Mytilus galloprovincialis

Mohamed Banni; Alessandro Negri; Alessandro Dagnino; Jamel Jebali; S. Ameur; Hamadi Boussetta

In the present study, mussel (Mytilus galloprovincialis) digestive gland biotransformation and detoxification responses to acute exposure to the polycyclic aromatic hydrocarbon benzo[a]pyrene (B[a]P) were investigated. Mussels were exposed to a sublethal dose of B[a]P (75 nM; 19 microg/l per animal) for 24, 48 and 72h. The following biological responses were measured in the digestive gland tissues: (1) B[a]P hydroxylase (BPH) activity, as phase I biotransformation parameter; (2) glutathione S-transferase (GST) activity as a phase II conjugation enzyme, (3) catalase (CAT) activity as potential biomarker of oxidative stress, (4) acetylcholinesterase (AChE) activity as an indication of possible neurotoxicity response. DNA damage was assessed over time using the single cell gel electrophoresis comet assay and the micronuclei test. BPH and GST activities showed an increasing trend over exposure period. CAT activity showed a symmetrical bell shape response with a maximum at 48h. AChE activity was significantly depressed after 48 and 72h exposure to B[a]P. Comet assay and micronuclei test in digestive gland cells suggest that B[a]P exposure induced significant DNA damage with a maximum response after 72h exposure.


Integrated Environmental Assessment and Management | 2008

A ''Weight-of-Evidence'' Approach for the Integration of Environmental ''Triad'' Data to Assess Ecological Risk and Biological Vulnerability

Alessandro Dagnino; Susanna Sforzini; Francesco Dondero; Stefano Fenoglio; Elisa Bona; John Jensen; Aldo Viarengo

ABSTRACT A new Expert Decision Support System (EDSS) that can integrate Triad data for assessing environmental risk and biological vulnerability at contaminated sites has been developed. Starting with ecosystem relevance, the EDSS assigns different weights to the results obtained from Triad disciplines. The following parameters have been employed: 1) chemical soil analyses (revealing the presence of potentially dangerous substances), 2) ecotoxicological bioassays (utilizing classical endpoints such as survival and reproduction rates), 3) biomarkers (showing sublethal pollutant effects), and 4) ecological parameters (assessing changes in community structure and functions). For each Triad discipline, the EDSS compares the data obtained at the studied field sites with reference values and calculates different 0–1 indexes (e.g., Chemical Risk Index, Ecotoxicological Risk Index, and Ecological Risk Index). The EDSS output consists of 3 indexes: 1) Environmental Risk Index (EnvRI), quantifying the level of biological damage at population–community level, 2) Biological Vulnerability Index (BVI), assessing the potential threats to biological equilibriums, and 3) Genotoxicity Index (GTI), screening genotoxicity effects. The EDSS has been applied in the integration of a battery of Triad data obtained during the European Union-funded Life Intervention in the Fraschetta Area (LINFA) project, which has been carried out in order to estimate the potential risk from soils of a highly anthropized area (Alessandria, Italy) mainly impacted by deposition of atmospheric pollutants. Results obtained during 4 seasonal sampling campaigns (2004–2005) show maximum values of EnvRI in sites A and B (characterized by industrial releases) and lower levels in site D (affected by vehicular traffic emissions). All 3 potentially polluted sites have shown high levels of BVI and GTI, suggesting a general change from reference conditions (site C).


Ecotoxicology and Environmental Safety | 2010

Uptake and biochemical responses of mussels Mytilus galloprovincialis exposed to sublethal nickel concentrations

Hajer Attig; Alessandro Dagnino; Alessandro Negri; Jamel Jebali; Hamadi Boussetta; Aldo Viarengo; Francesco Dondero; Mohamed Banni

In the present study, mussel (Mytilus galloprovincialis) digestive gland oxidative stress biomarkers and detoxification responses to acute exposure to nickel (Ni) were investigated. Mussels were exposed to two sublethal concentrations of Ni (135 μg/L per animal (2.5 μM) and 770 μg/L per animal (13 μM)) for 24, 48, 72, 96 h and 8 days. Following biological responses were measured: (1) glutathione S-transferase (GST) activity as a phase II conjugation enzyme, (2) catalase activity as antioxidant response, (3) malondialdehyde accumulation (MDA) as lipid peroxydation marker and metallothionein as specific response to metals exposure. The cholinergic system was evaluated using the acetylcholinesterase activity (AChE). Moreover, Ni uptakes during the exposure periods were assessed and the uptake rate constant determined. A correlation matrix (CM) between the investigated biomarkers and a principal component analysis (PCA) were achieved for the two tested concentrations. The Ni-uptake constant was higher in animals exposed to the lowest concentration. The CM and the PCA showed a time-dependent effect of the Ni exposure on the investigated biomarkers being more pronounced in animals exposed to the highest Ni concentration. While AChE showed a significant increase after 48 h and a further return to control values in the lowest concentration, it was drastically maintained inhibited in the highest concentration. Our data provided clues about the occurrence of different toxicokinetics and toxicodynamics of two Ni sublethal concentrations in an ecologically relevant organism.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2012

Genotoxicity assessment in Eisenia andrei coelomocytes: A study of the induction of DNA damage and micronuclei in earthworms exposed to B[a]P- and TCDD-spiked soils

Susanna Sforzini; Marta Boeri; Alessandro Dagnino; Laura Oliveri; Claudia Bolognesi; Aldo Viarengo

Earthworms are useful indicators of soil quality and are widely used as model organisms in terrestrial ecotoxicology. The assessment of genotoxic effects caused by environmental pollutants is of great concern because of their relevance in carcinogenesis. In this work, the earthworm Eisenia andrei was exposed for 10 and 28 days to artificial standard soil contaminated with environmentally relevant concentrations of benzo[a]pyrene (B[a]P) (0.1, 10, 50ppm) and 2,3,7,8-tetrachloro-dibenzo-para-dioxin (TCDD) (1×10(-5), 1×10(-4), 2×10(-3)ppm). Micronucleus (MNi) induction was evaluated in earthworm coelomocytes after DNA staining with the fluorescent dye DAPI. In the same cells, the DNA damage was assessed by means of the alkaline comet assay. Induction of MNi in coelomocytes, identified according to standard criteria, was demonstrated. B[a]P exposure for 10 and 28 days induced a significant increase in MNi frequency. In TCDD-treated earthworms, a significant effect on chromosomal damage was observed at all the concentrations used; surprisingly, greater effects were induced in animals exposed to the lowest concentration (1×10(-5)ppm). The data of the comet assay revealed a significant increase in the level of DNA damage in coelomocytes of earthworms exposed for 10 and 28 days to the different concentrations of B[a]P and TCDD. The results show that the comet and MN assays were able to reveal genotoxic effects in earthworms exposed even to the lowest concentrations of both chemicals tested here. The combined application in E. andrei of the comet assay and the micronucleus test, which reflect different biological mechanisms, may be suggested to identify genotoxic effects induced in these invertebrates by environmental contaminants in terrestrial ecosystems.


Science of The Total Environment | 2013

The use of protozoa in ecotoxicology: Application of multiple endpoint tests of the ciliate E. crassus for the evaluation of sediment quality in coastal marine ecosystems

Alessio Gomiero; Alessandro Dagnino; C. Nasci; Aldo Viarengo

Despite an increasing number of surveys describing adverse effects of contaminated sediments on marine organisms, few studies have addressed protists. In this study, the free-crawling marine ciliate Euplotes crassus was evaluated as the test organism for the screening of sediment toxicity using sediments from both coastal and estuarine sites of the Venice Lagoon (Marghera harbour [MH], Valle Millecampi [MV], Murano island [MI] and Lido inlet [LI]). Two endpoints of high ecological value, mortality (Mry) and replication rate (RpR), were assessed in combination with the two sublethal biomarkers of stress, endocytotic rate (Ecy) and lysosomal membrane stability (NRRT). The results showed a significant inhibition of RpR, Ecy and NRRT paralleled by a small and insignificantly increased Mry of the exposed specimens. Our results thus demonstrate that only a combination of mortality and sublethal biomarkers was able to characterise an exposure-related stress syndrome. The suite of biomarkers described here was also able to detect and resolve a pollution-induced stress syndrome at an early stage of pollution. The contamination level of the sediments was assessed using chemical analysis, by estimating bioavailability and by computing a toxic pressure coefficient (TPC) to account for potential additive effects of different pollutants. The observed biological responses were consistent with the contamination levels in sediments, suggesting a high potential for using Protozoa in bioassays to assess environmental risk in coastal marine systems.


Chemosphere | 2011

Effects of dioxin exposure in Eisenia andrei: integration of biomarker data by an Expert System to rank the development of pollutant-induced stress syndrome in earthworms.

Susanna Sforzini; Alessandro Dagnino; Laura Oliveri; Laura Canesi; Aldo Viarengo

A battery of biomarkers has recently been developed in the earthworm Eisenia andrei. In this study, different biomarkers (i.e. Ca²⁺-ATPase activity, lysosomal membrane stability-LMS, lysosomal lipofuscin and neutral lipid content) were utilized to evaluate the alterations in the physiological status of animals, induced by exposure for 3d to different sublethal concentrations of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) (1.5 × 10⁻³, 1.5 × 10⁻², 1.5×10⁻¹ ng mL⁻¹) utilizing the paper contact toxicity test. Lysosome/cytoplasm volume ratio and DNA damage were also evaluated as a biomarker at the tissue level and as a biomarker of genotoxicity, respectively. Moreover, the NR retention time assay conditions were optimized for the determination of in vivo LMS in earthworm coelomocytes. The results demonstrate that LMS and Ca²⁺-ATPase activity were early warning biomarkers able to detect the effects of minimal amounts of TCDD and that biomarkers evaluated at the tissue level are important for following the evolution of the stress syndrome in earthworms. To evaluate the health status of the animals, an Earthworm Expert System (EES) for biomarker data integration and interpretation was developed. The EES proved to be a suitable tool able to rank, objectively, the different levels of the stress syndrome in E. andrei induced by the different concentrations of TCDD.


Aquatic Toxicology | 2012

The use of multiple endpoints to assess cellular responses to environmental contaminants in the interstitial marine ciliate Euplotes crassus.

A. Gomiero; Susanna Sforzini; Alessandro Dagnino; Cristina Nasci; A. Viarengo

This paper presents the results of investigations on the suitability of Euplotes crassus, an interstitial marine ciliate, to be used as model organism in ecotoxicology and thereafter to evaluate the toxicity of estuarine and coastal sediments upon laboratory exposure. Nowadays, anthropogenic activities have resulted in accumulation of metals and organic pollutants in the environment as well as in the food chain hence leading to serious ecological and human health problems. This may pose a risk to benthic and epibenthic organisms and it is crucial to discover toxicity tests that will identify adverse effects of sediment-associated chemicals on benthic organisms. Due to their nature as a eukaryotic cell/organism and their position in the food web, ciliated protozoa are suitable models for evaluating the effects of pollution on aquatic communities. Lethal and sublethal effects of exposure to inorganic and organic pollutants were tested on the cell mortality, replication rate, lysosomal membrane stability and endocytosis rate of E. crassus. Increasing nominal concentrations of individual and mixtures of mercury, copper, and benzo(a)pyrene were investigated in this study as they might be bioavailable in naturally occurring polluted sites. A significant decrease in the mean replication rate (p<0.05) was found after 24h exposures to m/μM concentrations of all tested pollutants. At the same time, significant decreases of lysosomal membrane stability (p<0.05) were observed for Cu (5 μM), Hg (10 nM), and B(a)P (200 nM). Among the entire suite of tests, endocytosis rate test demonstrated the highest sensitivity. Exposures to binary mixtures of all studied pollutants were performed showing both inorganic-organic and inorganic-inorganic additive and/or antagonist effects. Moreover, medium salinity was also varied to mimic estuarine-like environmental conditions linking biological response to ionic strengths. Under these conditions significant increases of both endocytosis rate and lysosomal membrane stability were observed and related to the increment of some Hg- and Cu-related toxic complexes. The studied biomarkers were always able to discriminate between the effects of organic and inorganic pollutants. Together with the short time and simplicity of the test procedures, results obtained in this study indicate that E. crassus is a promising and convenient bioindicator for evaluating the toxicity of different environmental matrixes like pore water, sediments and wastewaters--polluted by metals and organic pollutants.


Science of The Total Environment | 2008

Use of highly sensitive sublethal stress responses in the social amoeba Dictyostelium discoideum for an assessment of freshwater quality

Susanna Sforzini; Alessandro Dagnino; Sara Torrielli; Francesco Dondero; Stefano Fenoglio; Alessandro Negri; Lara Boatti; Aldo Viarengo

In this work, the sensitivity of a battery of tests on the social amoeba Dictyostelium discoideum has been assessed within a freshwater toxicity study. The results obtained from the evaluation of survival and replication rate of D. discoideum were compared to those derived with a series of widely used tests for freshwater toxicity assessment, i. e. bioassays using Vibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata. The effects on sublethal endpoints, i.e. lysosomal membrane stability (LMS) and endocytotic rate, were analysed in conjunction with high-level endpoints to verify the potential to make a typical bioassay more sensitive. The field ecotoxicological investigation employing D. discoideum is part of a monitoring study assessing environmental quality of the Bormida River (Italy), subjected until recently to a chronic industrial pollution. The survey was carried out at several stations (upstream and downstream of a chemical factory outlet) in two different periods. In 2002, the results of chemical analyses performed on river water indicated no contamination. The ecotoxicological data obtained in this period showed that no evidence of biological effects was observed using V. fischeri and D. magna bioassays. In spite of the previous classical acute toxicity tests, significant differences in cell viability of D. discoideum were found. By analysing the effects measured on LMS and endocytotic rate, more relevant changes were observed for these sublethal stress biomarkers compared to survival. The chronic toxicity data showed significant changes in cell growth both of P. subcapitata and D. discoideum. Nevertheless, more sensitive and rapid responses were obtained when assessing the effects of exposure on D. discoideum. The chemical and ecotoxicological data obtained in 2006 indicated a full recovery of the quality of the river water (neither contamination nor toxicity found). Altogether, the results reported in this study underline that the use of a battery of biomarkers in conjunction with high-level endpoints may help follow the pollutant-induced stress syndrome in the organisms from early sublethal effects to starting mortality.


Environment International | 2013

Development and application of an innovative expert decision support system to manage sediments and to assess environmental risk in freshwater ecosystems.

Alessandro Dagnino; Tiziano Bo; Andrea Copetta; Stefano Fenoglio; Caterina Oliveri; Angelo Felli; Aldo Viarengo

With the aim of supporting decision makers to manage contamination in freshwater environments, an innovative expert decision support system (EDSS) was developed. The EDSS was applied in a sediment quality assessment along the Bormida river (NW, Italy) which has been heavily contaminated by an upstream industrial site for more than a century. Sampling sites were classified by means of comparing chemical concentrations with effect-based target values (threshold and probable effect concentrations). The level of each contaminant and the combined toxic pressure were used to rank sites into three categories: (i) uncontaminated (8 sites), (ii) mildly contaminated (4) and (iii) heavily contaminated (19). In heavily contaminated sediments, an environmental risk index (EnvRI) was determined by means of integrating chemical data with ecotoxicological and ecological parameters (triad approach). In addition a sediment risk index (SedRI) was computed from combining chemical and ecotoxicological data. Eight sites exhibited EnvRI values ≥0.25, the safety threshold level (range of EnvRI values: 0.14-0.31) whereas SedRI exceeded the safety threshold level at 6 sites (range of SedRI values: 0.16-0.36). At sites classified as mildly contaminated, sublethal biomarkers were integrated with chemical data into a biological vulnerability index (BVI), which exceeded the safety threshold level at one site (BVI value: 0.28). Finally, potential human risk was assessed in selected stations (11 sites) by integrating genotoxicity biomarkers (GTI index falling in the range 0.00-0.53). General conclusions drawn from the EDSS data include: (i) in sites classified as heavily contaminated, only a few exhibited some significant, yet limited, effects on biodiversity; (ii) restrictions in re-using sediments from heavily contaminated sites found little support in ecotoxicological data; (iii) in the majority of the sites classified as mildly contaminated, tested organisms exhibited low response levels; (iv) preliminary results on genotoxicity biomarkers indicate possible negative consequences for humans if exposed to river sediments from target areas.

Collaboration


Dive into the Alessandro Dagnino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Dondero

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar

Mohamed Banni

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Hamadi Boussetta

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Stefano Fenoglio

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina Nasci

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jamel Jebali

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

A. Gomiero

University of the West

View shared research outputs
Researchain Logo
Decentralizing Knowledge