Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Dosio is active.

Publication


Featured researches published by Alessandro Dosio.


Journal of Geophysical Research | 2014

Magnitude of extreme heat waves in present climate and their projection in a warming world

Simone Russo; Alessandro Dosio; Rune G. Graversen; Jana Sillmann; Hugo Carrão; Martha B. Dunbar; Andrew Singleton; Paolo Montagna; Paulo Barbola; Jürgen Vogt

An extreme heat wave occurred in Russia in the summer of 2010. It had serious impacts on humans and natural ecosystems, it was the strongest recorded globally in recent decades and exceeded in amplitude and spatial extent the previous hottest European summer in 2003. Earlier studies have not succeeded in comparing the magnitude of heat waves across continents and in time. This study introduces a new Heat Wave Magnitude Index that can be compared over space and time. The index is based on the analysis of daily maximum temperature in order to classify the strongest heat waves that occurred worldwide during the three study periods 1980–1990, 1991–2001, and 2002–2012. In addition, multimodel ensemble outputs from the Coupled Model Intercomparison Project Phase 5 are used to project future occurrence and severity of heat waves, under different Representative Concentration Pathways, adopted by the Intergovernmental Panel on Climate Change for its Fifth Assessment Report (AR5). Results show that the percentage of global area affected by heat waves has increased in recent decades. Moreover, model predictions reveal an increase in the probability of occurrence of extreme and very extreme heat waves in the coming years, in particular, by the end of this century, under the most severe IPCC AR5 scenario, events of the same severity as that in Russia in the summer of 2010 will become the norm and are projected to occur as often as every 2 years for regions such as southern Europe, North America, South America, Africa, and Indonesia.


Climate Dynamics | 2015

Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: evaluation over the present climate and analysis of the added value

Alessandro Dosio; Hans-Jürgen Panitz; Martina Schubert-Frisius; Daniel Lüthi

In this work we present the results of the application of the consortium for small-scale modeling (COSMO) regional climate model (COSMO-CLM, hereafter, CCLM) over Africa in the context of the coordinated regional climate downscaling experiment. An ensemble of climate change projections has been created by downscaling the simulations of four global climate models (GCM), namely: MPI-ESM-LR, HadGEM2-ES, CNRM-CM5, and EC-Earth. Here we compare the results of CCLM to those of the driving GCMs over the present climate, in order to investigate whether RCMs are effectively able to add value, at regional scale, to the performances of GCMs. It is found that, in general, the geographical distribution of mean sea level pressure, surface temperature and seasonal precipitation is strongly affected by the boundary conditions (i.e. driving GCMs), and seasonal statistics are not always improved by the downscaling. However, CCLM is generally able to better represent the annual cycle of precipitation, in particular over Southern Africa and the West Africa monsoon (WAM) area. By performing a singular spectrum analysis it is found that CCLM is able to reproduce satisfactorily the annual and sub-annual principal components of the precipitation time series over the Guinea Gulf, whereas the GCMs are in general not able to simulate the bimodal distribution due to the passage of the WAM and show a unimodal precipitation annual cycle. Furthermore, it is shown that CCLM is able to better reproduce the probability distribution function of precipitation and some impact-relevant indices such as the number of consecutive wet and dry days, and the frequency of heavy rain events.


Climate Dynamics | 2014

COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-Interim driven simulations at 0.44° and 0.22° resolution

Hans-Jürgen Panitz; Alessandro Dosio; Matthias Büchner; Daniel Lüthi; Klaus Keuler

We present the results of the application of the COSMO-CLM Regional Climate Model (CCLM) over the CORDEX-Africa domain. Two simulations were performed driven by the ERA-Interim reanalysis (1989–2008): the first one with the standard CORDEX spatial resolution (0.44°), and the second one with an unprecedented high resolution (0.22°). Low-level circulation and its vertical structure, the geographical and temporal evolution of temperature and precipitation are critically evaluated, together with the radiation budget and surface energy fluxes. CCLM is generally able to reproduce the overall features of the African climate, although some deficiencies are evident. Flow circulation is generally well simulated, but an excessive pressure gradient is present between the Gulf of Guinea and the Sahara, related to a marked warm bias over the Sahara and a cold bias over southern Sahel. CCLM underestimates the rainfall peak in the regions affected by the passage of the monsoon. This dry bias may be a consequence of two factors, the misplacement of the monsoon centre and the underestimation of its intensity. The former is related to the northern shift of the West African Heat Low. On the other hand, the underestimation of precipitation intensity may be related to the underestimation of the surface short-wave radiation and latent heat flux. The increase of the model resolution does not bring evident improvements to the results for monthly means statistics. As a result, it appears that 0.44° is a suitable compromise between model performances and computational constrains.


Journal of Climate | 2013

Assessment of the Performance of CORDEX Regional Climate Models in Simulating East African Rainfall

Hussen Seid Endris; Philip Omondi; Suman Jain; Christopher Lennard; Bruce Hewitson; Ladislaus Chang'a; Alessandro Dosio; Patrick Ketiem; Grigory Nikulin; Hans-Jürgen Panitz; Matthias Büchner; Frode Stordal; Lukiya Tazalika

AbstractThis study evaluates the ability of 10 regional climate models (RCMs) from the Coordinated Regional Climate Downscaling Experiment (CORDEX) in simulating the characteristics of rainfall patterns over eastern Africa. The seasonal climatology, annual rainfall cycles, and interannual variability of RCM output have been assessed over three homogeneous subregions against a number of observational datasets. The ability of the RCMs in simulating large-scale global climate forcing signals is further assessed by compositing the El Nino–Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) events. It is found that most RCMs reasonably simulate the main features of the rainfall climatology over the three subregions and also reproduce the majority of the documented regional responses to ENSO and IOD forcings. At the same time the analysis shows significant biases in individual models depending on subregion and season; however, the ensemble mean has better agreement with observation than individual models....


Theoretical and Applied Climatology | 2016

Daily characteristics of West African summer monsoon precipitation in CORDEX simulations

Nana Ama Browne Klutse; Mouhamadou Bamba Sylla; Ismaila Diallo; Abdoulaye Sarr; Alessandro Dosio; Arona Diedhiou; Andre Kamga; Benjamin Lamptey; Abdou Ali; Emiola O. Gbobaniyi; Kwadwo Owusu; Christopher Lennard; Bruce Hewitson; Grigory Nikulin; Hans-Jürgen Panitz; Matthias Büchner

We analyze and intercompare the performance of a set of ten regional climate models (RCMs) along with the ensemble mean of their statistics in simulating daily precipitation characteristics during the West African monsoon (WAM) period (June–July–August–September). The experiments are conducted within the framework of the COordinated Regional Downscaling Experiments for the African domain. We find that the RCMs exhibit substantial differences that are associated with a wide range of estimates of higher-order statistics, such as intensity, frequency, and daily extremes mostly driven by the convective scheme employed. For instance, a number of the RCMs simulate a similar number of wet days compared to observations but greater rainfall intensity, especially in oceanic regions adjacent to the Guinea Highlands because of a larger number of heavy precipitation events. Other models exhibit a higher wet-day frequency but much lower rainfall intensity over West Africa due to the occurrence of less frequent heavy rainfall events. This indicates the existence of large uncertainties related to the simulation of daily rainfall characteristics by the RCMs. The ensemble mean of the indices substantially improves the RCMs’ simulated frequency and intensity of precipitation events, moderately outperforms that of the 95th percentile, and provides mixed benefits for the dry and wet spells. Although the ensemble mean improved results cannot be generalized, such an approach produces encouraging results and can help, to some extent, to improve the robustness of the response of the WAM daily precipitation to the anthropogenic greenhouse gas warming.


Journal of Applied Meteorology | 2003

Dispersion of a Passive Tracer in Buoyancy- and Shear-Driven Boundary Layers

Alessandro Dosio; Jordi Vilà-Guerau de Arellano; Albert A. M. Holtslag; P.J.H. Builtjes

Abstract By means of finescale modeling [large-eddy simulation (LES)], the combined effect of thermal and mechanical forcing on the dispersion of a plume in a convective boundary layer is investigated. Dispersion of a passive tracer is studied in various atmospheric turbulent flows, from pure convective to almost neutral, classified according to the scaling parameters u∗/w∗ and −zi/L. The LES results for the flow statistics and dispersion characteristics are first validated for pure convective cases against the available results from laboratory and field experiments. Currently used parameterizations are evaluated with the model results. The effect of wind shear is studied by analyzing the dynamic variables, in particular the velocity variances, and their relation with the dispersion characteristics, specifically plume mean height, dispersion parameters, ground concentrations, and concentration fluctuations. The main effect of the wind shear results in a reduction of the vertical spread and an enhancement ...


Journal of the Atmospheric Sciences | 2005

Relating Eulerian and Lagrangian Statistics for the Turbulent Dispersion in the Atmospheric Convective Boundary Layer

Alessandro Dosio; Jordi Vilà-Guerau de Arellano; Albert A. M. Holtslag; P.J.H. Builtjes

Abstract Eulerian and Lagrangian statistics in the atmospheric convective boundary layer (CBL) are studied by means of large eddy simulation (LES). Spectra analysis is performed in both the Eulerian and Lagrangian frameworks, autocorrelations are calculated, and the integral length and time scales are derived. Eulerian statistics are calculated by means of spatial and temporal analysis in order to derive characteristic length and time scales. Taylor’s hypothesis of frozen turbulence is investigated, and it is found to be satisfied in the simulated flow. Lagrangian statistics are derived by tracking the trajectories of numerous particles released at different heights in the turbulent flow. The relationship between Lagrangian properties (autocorrelation functions) and dispersion characteristics (particles’ displacement) is studied through Taylor’s diffusion relationship, with special emphasis on the difference between horizontal and vertical motion. Results show that for the horizontal motion, Taylor’s rela...


Vol. 26586 (2014), doi:10.2791/7409 | 2014

Climate Impacts in Europe. The JRC PESETA II Project

Juan-Carlos Ciscar; Luc Feyen; Antonio Soria; Carlo Lavalle; Frank Raes; Miles Perry; Françoise Nemry; Hande Demirel; Máté Rózsai; Alessandro Dosio; Marcello Donatelli; Amit Kumar Srivastava; Davide Fumagalli; Stefan Niemeyer; Shailesh Shrestha; Pavel Ciaian; Mihaly Himics; Benjamin Van Doorslaer; Salvador Barrios; Nicolás Ibáñez; Giovanni Forzieri; Rodrigo Rojas; Alessandra Bianchi; Paul Dowling; Andrea Camia; Giorgio Libertà; Jesús San-Miguel-Ayanz; Daniele de Rigo; Giovanni Caudullo; Jose-I. Barredo

The objective of the JRC PESETA II project is to gain insights into the sectoral and regional patterns of climate change impacts in Europe by the end of this century. The study uses a large set of climate model runs and impact categories (ten impacts: agriculture, energy, river floods, droughts, forest fires, transport infrastructure, coasts, tourism, habitat suitability of forest tree species and human health). The project integrates biophysical direct climate impacts into a macroeconomic economic model, which enables the comparison of the different impacts based on common metrics (household welfare and economic activity). Under the reference simulation the annual total damages would be around €190 billion/year, almost 2% of EU GDP. The geographical distribution of the climate damages is very asymmetric with a clear bias towards the southern European regions. More than half of the overall annual EU damages are estimated to be due to the additional premature mortality (€120 billion). Moving to a 2°C world would reduce annual climate damages by €60 billion, to €120 billion (1.2% of GDP).


Journal of Geophysical Research | 2013

Modeling biomass burning and related carbon emissions during the 21st century in Europe

Mirco Migliavacca; Alessandro Dosio; Andrea Camia; Rasmus Hobourg; Tracy Houston‐Durrant; Johannes W. Kaiser; Nikolay Khabarov; A.A. Krasovskii; Barbara Marcolla; Jesús San Miguel-Ayanz; Daniel S. Ward; Alessandro Cescatti

In this study we present an assessment of the impact of future climate change on total fire probability, burned area, and carbon (C) emissions from fires in Europe. The analysis was performed with the Community Land Model (CLM) extended with a prognostic treatment of fires that was specifically refined and optimized for application over Europe. Simulations over the 21st century are forced by five different high-resolution Regional Climate Models under the Special Report on Emissions Scenarios A1B. Both original and bias-corrected meteorological forcings is used. Results show that the simulated C emissions over the present period are improved by using bias corrected meteorological forcing, with a reduction of the intermodel variability. In the course of the 21st century, burned area and C emissions from fires are shown to increase in Europe, in particular in the Mediterranean basins, in the Balkan regions and in Eastern Europe. However, the projected increase is lower than in other studies that did not fully account for the effect of climate on ecosystem functioning. We demonstrate that the lower sensitivity of burned area and C emissions to climate change is related to the predicted reduction of the net primary productivity, which is identified as the most important determinant of fire activity in the Mediterranean region after anthropogenic interaction. This behavior, consistent with the intermediate fire-productivity hypothesis, limits the sensitivity of future burned area and C emissions from fires on climate change, providing more conservative estimates of future fire patterns, and demonstrates the importance of coupling fire simulation with a climate driven ecosystem productivity model.


Climatic Change | 2016

Evaluation and projections of extreme precipitation over southern Africa from two CORDEX models

Izidine Pinto; Christopher Lennard; Mark Tadross; Bruce Hewitson; Alessandro Dosio; Grigory Nikulin; Hans-Juergen Panitz; Mxolisi Shongwe

The study focuses on the analysis of extreme precipitation events of the present and future climate over southern Africa. Parametric and non-parametric approaches are used to identify and analyse these extreme events in data from the Coordinated Regional Climate Downscaling Experiment (CORDEX) models. The performance of the global climate model (GCM) forced regional climate model (RCM) simulations shows that the models are able to capture the observed climatological spatial patterns of the extreme precipitation. It is also shown that the downscaling of the present climate are able to add value to the performance of GCMs over some areas depending on the metric used. The added value over GCMs justifies the additional computational effort of RCM simulation for the generation of relevant climate information for regional application. In the climate projections for the end of twenty-first Century (2069–2098) relative to the reference period (1976–2005), annual total precipitation is projected to decrease while the maximum number of consecutive dry days increases. Maximum 5-day precipitation amounts and 95th percentile of precipitation are also projected to increase significantly in the tropical and sub-tropical regions of southern Africa and decrease in the extra-tropical region. There are indications that rainfall intensity is likely to increase. This does not equate to an increase in total rainfall, but suggests that when it does rain, the intensity is likely to be greater. These changes are magnified under the RCP8.5 when compared with the RCP4.5 and are consistent with previous studies based on GCMs over the region.

Collaboration


Dive into the Alessandro Dosio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grigory Nikulin

Swedish Meteorological and Hydrological Institute

View shared research outputs
Top Co-Authors

Avatar

Rodrigo Rojas

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans-Jürgen Panitz

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A.A. Krasovskii

International Institute for Applied Systems Analysis

View shared research outputs
Top Co-Authors

Avatar

Nikolay Khabarov

International Institute for Applied Systems Analysis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge