Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Fatatis is active.

Publication


Featured researches published by Alessandro Fatatis.


Cancer Research | 2004

CX3CR1-Fractalkine Expression Regulates Cellular Mechanisms Involved in Adhesion, Migration, and Survival of Human Prostate Cancer Cells

Shannon A. Shulby; Nathan Graeme Dolloff; Mark E. Stearns; Olimpia Meucci; Alessandro Fatatis

Chemokines and their receptors might be involved in the selection of specific organs by metastatic cancer cells. For instance, the CXCR4-SDF-1α pair regulates adhesion and migration of breast as well as prostate cancer cells to metastatic sites. In this study, we present the first evidence for the expression of CX3CR1—the specific receptor for the chemokine fractalkine—by human prostate cancer cells, whereas human bone marrow endothelial cells and differentiated osteoblasts express fractalkine. The adhesion of prostate cancer cells to human bone marrow endothelial cells in flow conditions is significantly reduced by a neutralizing antibody against fractalkine, and they migrate toward a medium conditioned by osteoblasts, which secrete the soluble form of the chemokine. Finally, fractalkine activates the PI3K/Akt survival pathway in human prostate cancer cells.


Cell Cycle | 2010

The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts.

Gloria Bonuccelli; Diana Whitaker-Menezes; Remedios Castello-Cros; Stephanos Pavlides; Richard G. Pestell; Alessandro Fatatis; Agnieszka K. Witkiewicz; Matthew G. Vander Heiden; Gemma Migneco; Barbara Chiavarina; Philippe G. Frank; Franco Capozza; Neal Flomenberg; Ubaldo E. Martinez-Outschoorn; Federica Sotgia; Michael P. Lisanti

We and others have previously identified a loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts (CAFs) as a powerful single independent predictor of breast cancer patient tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. However, it remains unknown how loss of stromal Cav-1 mediates these effects clinically. To mechanistically address this issue, we have now generated a novel human tumor xenograft model. In this two-component system, nude mice are co-injected with i) human breast cancer cells (MDA-MB-231), and ii) stromal fibroblasts (wild-type (WT) versus Cav-1 (-/-) deficient). This allowed us to directly evaluate the effects of a Cav-1 deficiency solely in the tumor stromal compartment. Here, we show that Cav-1-deficient stromal fibroblasts are sufficient to promote both tumor growth and angiogenesis, and to recruit Cav-1 (+) micro-vascular cells. Proteomic analysis of Cav-1-deficient stromal fibroblasts indicates that these cells upregulate the expression of glycolytic enzymes, a hallmark of aerobic glycolysis (the Warburg effect). Thus, Cav-1-deficient stromal fibroblasts may contribute towards tumor growth and angiogenesis, by providing energy-rich metabolites in a paracrine fashion. We have previously termed this new idea the “Reverse Warburg Effect”. In direct support of this notion, treatment of this xenograft model with glycolysis inhibitors functionally blocks the positive effects of Cav-1-deficient stromal fibroblasts on breast cancer tumor growth. Thus, pharmacologically-induced metabolic restriction (via treatment with glycolysis inhibitors) may be a promising new therapeutic strategy for breast cancer patients that lack stromal Cav-1 expression. We also identify the stromal expression of PKM2 and LDH-B as new candidate biomarkers for the “Reverse Warburg Effect” or “Stromal-Epithelial Metabolic Coupling” in human breast cancers.


Cell Cycle | 2010

Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: Evidence for stromal-epithelial metabolic coupling

Gemma Migneco; Diana Whitaker-Menezes; Barbara Chiavarina; Remedios Castello-Cros; Stephanos Pavlides; Richard G. Pestell; Alessandro Fatatis; Neal Flomenberg; Aristotelis Tsirigos; Anthony Howell; Ubaldo E. Martinez-Outschoorn; Federica Sotgia; Michael P. Lisanti

Previously, we proposed a new model for understanding the Warburg effect in tumorigenesis and metastasis. In this model, the stromal fibroblasts would undergo aerobic glycolysis (a.k.a., the Warburg effect)—producing and secreting increased pyruvate/lactate that could then be used by adjacent epithelial cancer cells as “fuel” for the mitochondrial TCA cycle, oxidative phosphorylation, and ATP production. To test this model more directly, here we used a matched set of metabolically well-characterized immortalized fibroblasts that differ in a single gene. CL3 fibroblasts show a shift towards oxidative metabolism, and have an increased mitochondrial mass. In contrast, CL4 fibroblasts show a shift towards aerobic glycolysis, and have a reduced mitochondrial mass. We validated these differences in CL3 and CL4 fibroblasts by performing an unbiased proteomics analysis, showing the functional upregulation of 4 glycolytic enzymes, namely ENO1, ALDOA, LDHA and TPI1, in CL4 fibroblasts. Many of the proteins that were upregulated in CL4 fibroblasts, as seen by unbiased proteomics, were also transcriptionally upregulated in the stroma of human breast cancers, especially in the patients that were prone to metastasis. Importantly, when CL4 fibroblasts were co-injected with human breast cancer cells (MDA-MB-231) in a xenograft model, tumor growth was dramatically enhanced. CL4 fibroblasts induced a >4-fold increase in tumor mass, and a near 8-fold increase in tumor volume, without any measurable increases in tumor angiogenesis. In parallel, CL3 and CL4 fibroblasts both failed to form tumors when they were injected alone, without epithelial cancer cells. Mechanistically, under co-culture conditions, CL4 glycolytic fibroblasts increased mitochondrial activity in adjacent breast cancer cells (relative to CL3 cells), consistent with the “Reverse Warburg Effect”. Notably, Western blot analysis of CL4 fibroblasts revealed a significant reduction in caveolin-1 (Cav-1) protein levels. In human breast cancer patients, a loss of stromal Cav-1 is associated with an increased risk of early tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. Thus, loss of stromal Cav-1 may be an effective marker for predicting the “Reverse Warburg Effect” in the stroma of human breast cancer patients. As such, CL4 fibroblasts are a new attractive model for mimicking the “glycolytic phenotype” of cancer-associated fibroblasts. Nutrients derived from glycolytic cancer associated fibroblasts could provide an escape mechanism to confer drug-resistance during anti-angiogenic therapy, by effectively reducing the dependence of cancer cells on a vascular blood supply.


Cancer Research | 2008

CX3CR1 Is Expressed by Prostate Epithelial Cells and Androgens Regulate the Levels of CX3CL1/Fractalkine in the Bone Marrow: Potential Role in Prostate Cancer Bone Tropism

Whitney L. Jamieson; Saori Shimizu; Julia A. D'Ambrosio; Olimpia Meucci; Alessandro Fatatis

We have previously shown that the chemokine fractalkine promotes the adhesion of human prostate cancer cells to bone marrow endothelial cells as well as their migration toward human osteoblasts in vitro. Thus, the interaction of fractalkine with its receptor CX3CR1 could play a crucial role in vivo by directing circulating prostate cancer cells to the bone. We found that although CX3CR1 is minimally detectable in epithelial cells of normal prostate glands, it is overexpressed upon malignant transformation. Interestingly, osteoblasts, stromal and mesenchymal cells derived from human bone marrow aspirates express the cell-bound form of fractalkine, whereas the soluble form of the chemokine is detected in bone marrow supernatants. To investigate the mechanisms regulating the levels of soluble fractalkine in the bone marrow, we focused on androgens, which play a critical role in both prostate cancer progression and skeletal metastasis. Here, we show that dihydrotestosterone dramatically increases the cleavage of fractalkine from the plasma membrane of bone cells and its action is reversed by nilutamide--an antagonist of the androgen receptor--as well as the wide-spectrum inhibitor of matrix metalloproteases, GM6001. However, dihydrotestosterone was unable to induce fractalkine-cleavage from human bone marrow endothelial cells. Thus, androgens could promote the extravasation of CX3CR1-bearing cancer cells on a fractalkine concentration gradient, while leaving unaltered their ability to adhere to the bone marrow endothelium. In conclusion, our results indicate that CX3CR1, fractalkine, and the enzymes responsible for its cleavage might represent suitable targets for therapies aiming to counteract skeletal secondary tumors from prostate adenocarcinoma.


Journal of NeuroVirology | 2003

The chemokine receptor CXCR4 regulates cell-cycle proteins in neurons

Muhammad Z. Khan; Renato Brandimarti; Brian Joseph Musser; Danielle Marie Resue; Alessandro Fatatis; Olimpia Meucci

Neurons express a variety of chemokine receptors that regulate neuronal signaling and survival, including CXCR4 and CCR5, the two major human immunodeficiency virus (HIV) coreceptors. However, the role of chemokine receptors in HIV neuropathology and neuroinflammatory disorders is still unclear. This study aims to determine whether chemokine receptors regulate the activity of cell-cycle proteins in neurons and evaluate the possibility that alterations of these proteins are involved in HIV neuropathogenesis. The authors studied the effect of the chemokine stromal cell-derived factor (SDF)-1α, the natural CXCR4 ligand, and an X4-using variant of gp120 on the activity of cell-cycle proteins involved in neuronal apoptosis and differentiation, such as Rb and E2F-1. Changes in expression, localization, and phosphorylation/activation of Rb and E2F-1 induced by SDF-1α (20 nM) gp120IIIB (200 pM) were analyzed in primary cultures of rat neurons and in a human cell line expressing recombinant CXCR4. The data indicate that changes in the nuclear and cytosolic levels of Rb—which result in the functional loss of this protein—are associated with apoptosis in hippocampal or cerebellar granule neurons and in cell lines. SDF-1α, which is able to rescue these neurons from apoptosis, induces a time-dependent increase of total Rb expression while decreasing the nuclear content of phosphorylated (Ser780/Ser795) Rb and the transcriptional activity of E2F-1. The HIV envelope protein gp120IIIB exerts opposite effects at the nuclear level. These data indicate that CXCR4 affects cell-cycle proteins in neurons and raise the possibility that chemokines may contribute to neuronal survival by repressing the activity of E2F-dependent apoptotic genes and maintaining neurons in a highly differentiated and quiescent state. This state may be altered during neuroinflammatory conditions and/or by HIV-derived proteins.


Oncogene | 2005

Bone-metastatic potential of human prostate cancer cells correlates with Akt/PKB activation by α platelet-derived growth factor receptor

Nathan Graeme Dolloff; Shannon S Shulby; Autumn V Nelson; Mark E. Stearns; Gregg J. Johannes; Jeff D. Thomas; Olimpia Meucci; Alessandro Fatatis

Prostate adenocarcinoma metastasizes to the skeleton more frequently than any other organ. An underlying cause of this phenomenon may be the ability of bone-produced factors to specifically select disseminated prostate cancer cells that are susceptible to their trophic effects. Platelet-derived growth factor (PDGF), a potent mitogen for both normal and tumor cells, is produced in several tissues including bone, where it is synthesized by both osteoblasts and osteoclasts. Here, we show that PDGF causes a significantly stronger activation of the Akt/PKB survival pathway in bone-metastatic prostate cancer cells compared to nonmetastatic cells. Normal prostate epithelial cells and DU-145 prostate cells, originally derived from a brain metastasis, are not responsive to PDGF. In contrast, epidermal growth factor stimulates Akt to the same extent in all prostate cells tested. This difference in PDGF responsiveness depends on the higher expression of α-PDGFR in bone-metastatic compared to nonmetastatic prostate cells and the lack of α-PDGFR expression in normal and metastatic prostate cells derived from tissues other than bone. Thus, α-PDGFR expression might identify prostate cancer cells with the highest propensity to metastasize to the skeleton.


Cancer Research | 2013

Interleukin-1β promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features.

Qingxin Liu; Mike R. Russell; Kristina S. Shahriari; Danielle Jernigan; Mercedes I. Lioni; Fernando U. Garcia; Alessandro Fatatis

Despite the progress made in the early detection and treatment of prostate adenocarcinoma, the metastatic lesions from this tumor are incurable. We used genome-wide expression analysis of human prostate cancer cells with different metastatic behavior in animal models to reveal that bone-tropic phenotypes upregulate three genes encoding for the cytokine interleukin-1β (IL-1β), the chemokine CXCL6 (GCP-2), and the protease inhibitor elafin (PI3). The Oncomine database revealed that these three genes are significantly upregulated in human prostate cancer versus normal tissue and correlate with Gleason scores ≥7. This correlation was further validated for IL-1β by immunodetection in prostate tissue arrays. Our study also shows that the exogenous overexpression of IL-1β in nonmetastatic cancer cells promotes their growth into large skeletal lesions in mice, whereas its knockdown significantly impairs the bone progression of highly metastatic cells. In addition, IL-1β secreted by metastatic cells induced the overexpression of COX-2 (PTGS2) in human bone mesenchymal cells treated with conditioned media from bone metastatic prostate cancer cells. Finally, we inspected human tissue specimens from skeletal metastases and detected prostate cancer cells positive for both IL-1β and synaptophysin while concurrently lacking prostate-specific antigen (PSA, KLK3) expression. Collectively, these findings indicate that IL-1β supports the skeletal colonization and metastatic progression of prostate cancer cells with an acquired neuroendocrine phenotype.


Journal of Biological Chemistry | 2010

Interactions between Chemokines REGULATION OF FRACTALKINE/CX3CL1 HOMEOSTASIS BY SDF/CXCL12 IN CORTICAL NEURONS

Anna Cook; Randi L Hippensteel; Saori Shimizu; Jaclyn Nicolai; Alessandro Fatatis; Olimpia Meucci

The soluble form of the chemokine fractalkine/CX3CL1 regulates microglia activation in the central nervous system (CNS), ultimately affecting neuronal survival. This study aims to determine whether CXCL12, another chemokine constitutively expressed in the CNS (known as stromal cell-derived factor 1; SDF-1), regulates cleavage of fractalkine from neurons. To this end, ELISA was used to measure protein levels of soluble fractalkine in the medium of rat neuronal cultures exposed to SDF-1. Gene arrays, quantitative RT-PCR, and Western blot were used to measure overall fractalkine expression in neurons. The data show that the rate of fractalkine shedding in healthy cultures positively correlates with in vitro differentiation and survival. In analogy to non-neuronal cells, metalloproteinases (ADAM10/17) are involved in cleavage of neuronal fractalkine as indicated by studies with pharmacologic inhibitors. Moreover, treatment of the neuronal cultures with SDF-1 stimulates expression of the inducible metalloproteinase ADAM17 and increases soluble fractalkine content in culture medium. The effect of SDF-1 is blocked by an inhibitor of both ADAM10 and -17, but only partially affected by a more specific inhibitor of ADAM10. In addition, SDF-1 also up-regulates expression of the fractalkine gene. Conversely, exposure of neurons to an excitotoxic stimulus (i.e. NMDA) inhibits α-secretase activity and markedly diminishes soluble fractalkine levels, leading to cell death. These results, along with previous findings on the neuroprotective role of both SDF-1 and fractalkine, suggest that this novel interaction between the two chemokines may contribute to in vivo regulation of neuronal survival by modulating microglial neurotoxic properties.


Molecular and Cellular Neuroscience | 2005

Regulation of neuronal P53 activity by CXCR4

Muhammad Z. Khan; Saori Shimizu; Jeegar P. Patel; Autumn V Nelson; My-Thao Le; Anna Mullen-Przeworski; Renato Brandimarti; Alessandro Fatatis; Olimpia Meucci

Abnormal activation of CXCR 4 during inflammatory/infectious states may lead to neuronal dysfunction or damage. The major goal of this study was to determine the coupling of CXCR 4 to p53-dependent survival pathways in primary neurons. Neurons were stimulated with the HIV envelope protein gp120(IIIB) or the endogenous CXCR 4 agonist, SDF-1 alpha. We found that gp120 stimulates p53 activity and induces expression of the p53 pro-apoptotic target Apaf-1 in cultured neurons. Inhibition of CXCR 4 by AMD 3100 abrogates the effect of gp120 on both p53 and Apaf-1. Moreover, gp120 neurotoxicity is markedly reduced by the p53-inhibitor, pifithrin-alpha. The viral protein also regulates p53 phosphorylation and expression of other p53-responsive genes, such as MDM 2 and p21. Conversely, SDF-1 alpha, which can promote neuronal survival, increases p53 acetylation and p21 expression in neurons. Thus, the stimulation of different p53 targets could be instrumental in determining the outcome of CXCR 4 activation on neuronal survival in neuro-inflammatory disorders.


Clinical Cancer Research | 2010

Targeting the α Receptor for Platelet-Derived Growth Factor as a Primary or Combination Therapy in a Preclinical Model of Prostate Cancer Skeletal Metastasis

Mike R. Russell; Qingxin Liu; Alessandro Fatatis

Purpose: Platelet-derived growth factor α (PDGFRα) is highly expressed in primary prostate cancer and associated skeletal metastases. Here, we tested whether targeting this receptor could impair metastatic colonization and progression, as well as prolong survival, either as primary or as combination therapy. Experimental Design: We used a preclinical animal model of metastasis in which PC3-ML human prostate cancer cells are inoculated directly in the blood circulation. First, the humanized, monoclonal antibody IMC-3G3 was administered to mice bearing established skeletal metastases. Second, we targeted the stromal PDGFRα with IMC-1E10, an antibody specific for the murine receptor. Third, IMC-3G3 and the bisphosphonate zoledronic acid (ZA), administered separately or in combination, were tested on the progression of skeletal lesions and overall survival. In addition, the ability of IMC-3G3 and ZA to impair initial colonization of the bone marrow by prostate cancer cells was investigated. Results: The blockade of PDGFRα on prostate cancer cells by IMC-3G3 reduces the size of established skeletal metastases, whereas the IMC-1E10 antibody directed against the stromal PDGFRα fails to inhibit metastatic progression. IMC-3G3 and ZA, either separately or in combination, significantly slow tumor growth and seem to prolong survival. Lastly, the blockade of PDGFRα by IMC-3G3 inhibits the initial phase of bone colonization, whereas ZA is ineffective at this stage. Conclusion: This study presents compelling evidence that targeting PDGFRα with IMC-3G3 delays the progression of early metastatic foci and reduces the size of more established lesions. In addition, IMC-3G3, either alone or in combination with ZA, prolongs survival in animal models. Clin Cancer Res; 16(20); 5002–10. ©2010 AACR.

Collaboration


Dive into the Alessandro Fatatis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge