Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Genovese is active.

Publication


Featured researches published by Alessandro Genovese.


Journal of the American Chemical Society | 2011

Reversible Tunability of the Near-Infrared Valence Band Plasmon Resonance in Cu2–xSe Nanocrystals

Dirk Dorfs; Thomas Härtling; Karol Miszta; Nadja C. Bigall; Mee Rahn Kim; Alessandro Genovese; Andrea Falqui; Mauro Povia; Liberato Manna

We demonstrate that colloidal Cu(2-x)Se nanocrystals exhibit a well-defined infrared absorption band due to the excitation of positive charge carrier oscillations (i.e., a valence band plasmon mode), which can be tuned reversibly in width and position by varying the copper stoichiometry. The value of x could be incrementally varied from 0 (no plasmon absorption, then a broad peak at 1700 nm) to 0.4 (narrow plasmon band at 1100 nm) by oxidizing Cu(2)Se nanocrystals (upon exposure either to oxygen or to a Ce(IV) complex), and it could be incrementally restored back to zero by the addition of a Cu(I) complex. The experimentally observed plasmonic behavior is in good agreement with calculations based on the electrostatic approximation.


Nano Letters | 2011

Sequential Cation Exchange in Nanocrystals: Preservation of Crystal Phase and Formation of Metastable Phases

Hongbo Li; Marco Zanella; Alessandro Genovese; Mauro Povia; Andrea Falqui; Cinzia Giannini; Liberato Manna

We demonstrate that it is possible to convert CdSe nanocrystals of a given size, shape (either spherical or rod shaped), and crystal structure (either hexagonal wurtzite, i.e., hexagonal close packed (hcp), or cubic sphalerite, i.e., face-centered cubic (fcc)), into ZnSe nanocrystals that preserve all these characteristics of the starting particles (i.e., size, shape, and crystal structure), via a sequence of two cation exchange reactions, namely, Cd(2+) ⇒Cu(+) ⇒Zn(2+). When starting from hexagonal wurtzite CdSe nanocrystals, the exchange of Cd(2+) with Cu(+) yields Cu(2)Se nanocrystals in a metastable hexagonal phase, of which we could follow the transformation to the more stable fcc phase for a single nanorod, under the electron microscope. Remarkably, these metastable hcp Cu(2)Se nanocrystals can be converted in solution into ZnSe nanocrystals, which yields ZnSe nanocrystals in a pure hcp phase.


Journal of the American Chemical Society | 2013

Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu+ Ions

Yi Xie; Andreas Riedinger; Mirko Prato; Alberto Casu; Alessandro Genovese; Pablo Guardia; Silvia Sottini; Claudio Sangregorio; Karol Miszta; Sandeep Ghosh; Teresa Pellegrino; Liberato Manna

Platelet-shaped copper sulfide nanocrystals (NCs) with tunable Cu stoichiometry were prepared from Cu-rich covellite (Cu1.1S) nanoplates through their reaction with a Cu(I) complex ([Cu(CH3CN)4]PF6) at room temperature. Starting from a common sample, by this approach it is possible to access a range of compositions in these NCs, varying from Cu1.1S up to Cu2S, each characterized by a different optical response: from the metallic covellite, with a high density of free carriers and strong localized surface plasmon resonance (LSPR), up to Cu2S NCs with no LSPR. In all these NCs the valency of Cu in the lattice stays always close to +1, while the average -1 valency of S in covellite gradually evolves to -2 with increasing Cu content; i.e., sulfur is progressively reduced. The addition of copper to the starting covellite NCs is similar to the intercalation of metal species in layered transition metal dichalcogenides (TMDCs); i.e., the chalcogen-chalcogen bonds holding the layers are progressively broken to make room for the intercalated metals, while their overall anion sublattice does not change much. However, differently from the TMDCs, the intercalation in covellite NCs is sustained by a change in the redox state of the anion framework. Furthermore, the amount of Cu incorporated in the NCs upon reaction is associated with the formation of an equimolar amount of Cu(II) species in solution. Therefore, the reaction scheme can be written as: Cu1.1S + 2γCu(I) → Cu1.1+γS + γCu(II).


Journal of the American Chemical Society | 2010

Phosphine-free synthesis of p-type copper(I) selenide nanocrystals in hot coordinating solvents.

Sasanka Deka; Alessandro Genovese; Yang Zhang; Karol Miszta; Giovanni Bertoni; Roman Krahne; Cinzia Giannini; Liberato Manna

We report a phosphine-free synthesis of p-type copper(I) selenide nanocrystals by a colloidal approach in a mixture of oleylamine and 1-octadecene. The nanocrystals had a cuboctahedral shape and cubic berzelianite phase. Films of these nonstoichiometric copper-deficient Cu(2-x)Se nanocrystals were highly conductive and showed high absorption coefficient in the near-infrared region. These nanocrystals could be used as hole-injection layers in optoelectronic devices.


ACS Nano | 2011

Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: synthesis and cancer cell targeting and sorting.

Riccardo Di Corato; Nadja C. Bigall; Andrea Ragusa; Dirk Dorfs; Alessandro Genovese; Roberto Marotta; Liberato Manna; Teresa Pellegrino

Trifunctional polymer nanobeads are prepared by destabilization of a mixture of magnetic nanoparticles, quantum dots, and an amphiphilic polymer, followed by functionalization of the bead surface with folic acid molecules. The distribution of the nanoparticles within the nanobeads can be tuned using either acetonitrile or water as destabilizing solvent. The luminescence of the resulting beads can be tuned by varying the ratio of quantum dots per magnetic nanoparticles. The application of an external magnetic field (such as a small static magnet of 0.3 T) to the magnetic-fluorescent nanobeads allows the quantitative accumulation of the beads within a few hours depending on the total size of the beads. Furthermore, specific targeting of cancer cells overexpressing folate receptors is achieved thanks to the folic acid decorating the surface of the as-synthesized nanobeads. Folate receptor mediated cellular uptake of the folic acid-functionalized nanobeads is proven via both confocal imaging and transmission electron microscopy characterization. Cell sorting experiments performed with trifunctional nanobeads show quantitative recovering of targeted cells even when they are present at low percentage (up to 1%).


Nano Letters | 2010

Octapod-Shaped Colloidal Nanocrystals of Cadmium Chalcogenides via “One-Pot” Cation Exchange and Seeded Growth

Sasanka Deka; Karol Miszta; Dirk Dorfs; Alessandro Genovese; Giovanni Bertoni; Liberato Manna

The growth behavior of cadmium chalcogenides (CdE = CdS, CdSe, and CdTe) on sphalerite Cu(2-x)Se nanocrystals (size range 10-15 nm) is studied. Due to the capability of Cu(2-x)Se to undergo a fast and quantitative cation exchange reaction in the presence of excessive Cd(2+) ions, no Cu(2-x)Se/CdE heterostructures are obtained and instead branched CdSe/CdE nanocrystals are built which consist of a sphalerite CdSe core and wurtzite CdE arms. While CdTe growth yields multiarmed structures with overall tetrahedral symmetry, CdS and CdSe arm growth leads to octapod-shaped nanocrystals. These results differ significantly from literature findings about the growth of CdE on sphalerite CdSe particles, which until now had always yielded tetrapod-shaped nanocrystals.


Nano Letters | 2010

Epitaxial CdSe-Au Nanocrystal Heterostructures by Thermal Annealing

Albert Figuerola; Marijn A. van Huis; Marco Zanella; Alessandro Genovese; Sergio Marras; Andrea Falqui; H.W. Zandbergen; Roberto Cingolani; Liberato Manna

The thermal evolution of a collection of heterogeneous CdSe-Au nanosystems (Au-decorated CdSe nanorods, networks, vertical assemblies) prepared by wet-chemical approaches was monitored in situ in the transmission electron microscope. In contrast to interfaces that are formed during kinetically controlled wet chemical synthesis, heating under vacuum conditions results in distinct and well-defined CdSe/Au interfaces, located at the CdSe polar surfaces. The high quality of these interfaces should make the heterostructures more suitable for use in nanoscale electronic devices.


ACS Nano | 2015

From Binary Cu2S to ternary Cu-In-S and quaternary Cu-In-Zn-S nanocrystals with tunable composition via partial cation exchange.

Quinten A. Akkerman; Alessandro Genovese; Chandramohan George; Mirko Prato; Iwan Moreels; Alberto Casu; Sergio Marras; Alberto Curcio; Alice Scarpellini; Teresa Pellegrino; Liberato Manna; Vladimir Lesnyak

We present an approach for the synthesis of ternary copper indium sulfide (CIS) and quaternary copper indium zinc sulfide (CIZS) nanocrystals (NCs) by means of partial cation exchange with In(3+) and Zn(2+). The approach consists of a sequential three-step synthesis: first, binary Cu2S NCs were synthesized, followed by the homogeneous incorporation of In(3+) by an in situ partial cation-exchange reaction, leading to CIS NCs. In the last step, a second partial exchange was performed where Zn(2+) partially replaced the Cu(+) and In(3+) cations at the surface, creating a ZnS-rich shell with the preservation of the size and shape. By careful tuning reaction parameters (growth and exchange times as well as the initial Cu(+):In(3+):Zn(2+) ratios), control over both the size and composition was achieved. This led to a broad tuning of photoluminescence of the final CIZS NCs, ranging from 880 to 1030 nm without altering the NCs size. Cytotoxicity tests confirmed the biocompatibility of the synthesized CIZS NCs, which opens up opportunities for their application as near-infrared fluorescent markers in the biomedical field.


ACS Nano | 2014

Alloyed Copper Chalcogenide Nanoplatelets via Partial Cation Exchange Reactions

Vladimir Lesnyak; Chandramohan George; Alessandro Genovese; Mirko Prato; Alberto Casu; S. Ayyappan; Alice Scarpellini; Liberato Manna

We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide–sulfide (CZSeS), copper tin selenide–sulfide (CTSeS), and copper zinc tin selenide–sulfide (CZTSeS) nanoplatelets (NPLs) (∼20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide–sulfide (Cu2–xSeyS1–y) platelet shaped nanocrystals via the colloidal route, followed by an in situ cation exchange reaction. During the latter step, the cation exchange proceeded through a partial replacement of copper ions by zinc or/and tin cations, yielding homogeneously alloyed nanocrystals with platelet shape. Overall, the chemical composition of the alloyed nanocrystals can easily be controlled by the amount of precursors that contain cations of interest (e.g., Zn, Sn) to be incorporated/alloyed. We have also optimized the reaction conditions that allow a complete preservation of the size, morphology, and crystal structure as that of the starting Cu2–xSeyS1–y NPLs. The alloyed NPLs were characterized by optical spectroscopy (UV–vis–NIR) and cyclic voltammetry (CV), which demonstrated tunability of their light absorption characteristics as well as their electrochemical band gaps.


Chemical Communications | 2011

Synthesis of branched Au nanoparticles with tunable near-infrared LSPR using a zwitterionic surfactant

Piersandro Pallavicini; Giuseppe Chirico; Maddalena Collini; Giacomo Dacarro; Alice Donà; Laura D'Alfonso; Andrea Falqui; Yuri Antonio Diaz-Fernandez; S. Freddi; B. Garofalo; Alessandro Genovese; Laura Sironi; Angelo Taglietti

Asymmetric branched gold nanoparticles are obtained using for the first time in the seed-growth approach a zwitterionic surfactant, laurylsulfobetaine, whose concentration in the growth solution allows to control both the length to base-width ratio of the branches and the LSPR position, that can be tuned in the 700-1100 nm near infrared range.

Collaboration


Dive into the Alessandro Genovese's collaboration.

Top Co-Authors

Avatar

Andrea Falqui

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Liberato Manna

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Alberto Casu

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Liberato Manna

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Mauro Povia

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Chandramohan George

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Mirko Prato

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Alberto Diaspro

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Karol Miszta

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Roberto Cingolani

Istituto Italiano di Tecnologia

View shared research outputs
Researchain Logo
Decentralizing Knowledge