Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Ieraci is active.

Publication


Featured researches published by Alessandro Ieraci.


The Journal of Neuroscience | 2005

Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway

Zhe-Yu Chen; Alessandro Ieraci; Henry Teng; Henning Dall; Chui-Xiang Meng; Daniel G. Herrera; Anders Nykjaer; Barbara L. Hempstead; Francis S. Lee

Brain-derived neurotrophic factor (BDNF), after activity-dependent secretion from neurons, modulates critical nervous system functions. Recently, a variant in the human bdnf gene, resulting in a valine to methionine substitution in the prodomain, has been shown to lead to defective regulated secretion from neurons and memory impairment. Here, we report a novel function for a Vps10p domain protein, sortilin, in controlling BDNF sorting to the regulated secretory pathway. Sortilin interacts specifically with BDNF in a region encompassing the methionine substitution and colocalizes with BDNF in secretory granules in neurons. A truncated form of sortilin causes BDNF missorting to the constitutive secretory pathway without affecting neurotrophin-4 (NT-4) secretion. In addition, sortilin small interfering RNA introduced into primary neurons also led to BDNF missorting from the regulated to the constitutive secretory pathway. Together, these data suggest a mechanism to understand the defect associated with variant BDNF and provide a framework, based on divergent presynaptic regulation of sorting to secretory pathways, to explain how two ligands for tropomyosin-related kinase B, BDNF and NT-4, can mediate diverse biological responses.


Neurobiology of Disease | 2007

Single alcohol exposure in early life damages hippocampal stem/progenitor cells and reduces adult neurogenesis.

Alessandro Ieraci; Daniel G. Herrera

Alcohol exposure during pregnancy may cause fetal alcohol syndrome (FAS), characterized by impaired cognitive functions. Neurogenesis occurs in the adult hippocampus and is functionally associated with learning, memory, and mood disorders. However, whether early postnatal exposure to alcohol impairs neurogenesis and through which mechanisms it occurs is poorly understood. Here, we report that a single episode of alcohol exposure in postnatal day 7 (P7) decreases neurogenesis in the adult hippocampus. Furthermore, we demonstrate a co-localization of glial fibrillar acidic protein, nestin, and vimentin with activated caspase-3 12 h after ethanol treatment. Finally, we show that the number of primary neurospheres derived from the hippocampi of alcohol-exposed mice is reduced compared to controls. These findings suggest that alcohol exposure in postnatal mice reduces the pool of neural stem/progenitor cells in the DG, and subsequently results in a decrease of adult neurogenesis. This may explain certain aspects of impaired hippocampal functions in FAS.


Neural Plasticity | 2016

Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

Alessandro Ieraci; Alessandra Mallei; Maurizio Popoli

Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI) mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH) mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice.


Hippocampus | 2015

Physical exercise and acute restraint stress differentially modulate hippocampal brain-derived neurotrophic factor transcripts and epigenetic mechanisms in mice

Alessandro Ieraci; Alessandra Mallei; Laura Musazzi; Maurizio Popoli

Physical exercise and stressful experiences have been shown to exert opposite effects on behavioral functions and brain plasticity, partly by involving the action of brain‐derived neurotrophic factor (BDNF). Although epigenetic modifications are known to play a pivotal role in the regulation of the different BDNF transcripts, it is poorly understood whether epigenetic mechanisms are also implied in the BDNF modulation induced by physical exercise and stress. Here, we show that total BDNF mRNA levels and BDNF transcripts 1, 2, 3, 4, 6, and 7 were reduced immediately after acute restraint stress (RS) in the hippocampus of mice, and returned to control levels 24 h after the stress session. On the contrary, exercise increased BDNF mRNA expression and counteracted the stress‐induced decrease of BDNF transcripts. Physical exercise‐induced up‐regulation of BDNF transcripts was accounted for by increase in histone H3 acetylated levels at specific BDNF promoters, whereas the histone H3 trimethylated lysine 27 and dimethylated lysine 9 levels were unaffected. Acute RS did not change the levels of acetylated and methylated histone H3 at the BDNF promoters. Furthermore, we found that physical exercise and RS were able to differentially modulate the histone deacetylases mRNA levels. Finally, we report that a single treatment with histone deacetylase inhibitors, prior to acute stress exposure, prevented the down‐regulation of total BDNF and BDNF transcripts 1, 2, 3, and 6, partially reproducing the effect of physical exercise. Overall, these results suggest that physical exercise and stress are able to differentially modulate the expression of BDNF transcripts by possible different epigenetic mechanisms.


Journal of Neurochemistry | 2013

Binding of the repressor complex REST-mSIN3b by small molecules restores neuronal gene transcription in Huntington's disease models.

Paola Conforti; Chiara Zuccato; Germano Gaudenzi; Alessandro Ieraci; Stefano Camnasio; Noel J. Buckley; Cesare Mutti; Franco Cotelli; Alessandro Contini

Transcriptional dysregulation is a hallmark of Huntingtons disease (HD) and one cause of this dysregulation is enhanced activity of the REST‐mSIN3a‐mSIN3b‐CoREST‐HDAC repressor complex, which silences transcription through REST binding to the RE1/NRSE silencer. Normally, huntingtin (HTT) prevents this binding, allowing expressing of REST target genes. Here, we aimed to identify HTT mimetics that disrupt REST complex formation in HD. From a structure‐based virtual screening of 7 million molecules, we selected 94 compounds predicted to interfere with REST complex formation by targeting the PAH1 domain of mSIN3b. Primary screening using DiaNRSELuc8 cells revealed two classes of compounds causing a greater than two‐fold increase in luciferase. In particular, quinolone‐like compound 91 (C91) at a non‐toxic nanomolar concentration reduced mSIN3b nuclear entry and occupancy at the RE1/NRSE within the Bdnf locus, and restored brain‐derived neurotrophic factor (BDNF) protein levels in HD cells. The mRNA levels of other RE1/NRSE‐regulated genes were similarly increased while non‐REST‐regulated genes were unaffected. C91 stimulated REST‐regulated gene expression in HTT‐knockdown Zebrafish and increased BDNF mRNA in the presence of mutant HTT. Thus, a combination of virtual screening and biological approaches can lead to compounds reducing REST complex formation, which may be useful in HD and in other pathological conditions.


European Heart Journal | 2015

BDNFVal66met polymorphism: a potential bridge between depression and thrombosis.

Patrizia Amadio; Gualtiero I. Colombo; Eva Tarantino; Sara Gianellini; Alessandro Ieraci; Maura Brioschi; Cristina Banfi; J.P. Werba; Alessandro Parolari; Francis S. Lee; Elena Tremoli; Silvia S. Barbieri

Aims Epidemiological studies strongly suggest a link between stress, depression, and cardiovascular diseases (CVDs); the mechanistic correlation, however, is poorly understood. A single-nucleotide polymorphism in the BDNF gene (BDNFVal66Met), associated with depression and anxiety, has been proposed as a genetic risk factor for CVD. Using a knock-in mouse carrying the BDNFVal66Met human polymorphism, which phenocopies psychiatric-related symptoms found in humans, we investigated the impact of this SNP on thrombosis. Methods and results BDNFMet/Met mice displayed a depressive-like phenotype concomitantly with hypercoagulable state and platelet hyperreactivity. Proteomic analysis of aorta secretome from BDNFMet/Met and wild-type (WT) mice showed differential expression of proteins involved in the coagulation and inflammatory cascades. The BDNF Met allele predisposed to carotid artery thrombosis FeCl3-induced and to death after collagen/epinephrine injection. Interestingly, transfection with BDNFMet construct induced a prothrombotic/proinflammatory phenotype in WT cells. SIRT1 activation, using resveratrol and/or CAY10591, prevented thrombus formation and restored the physiological levels of coagulation and of platelet markers in BDNFMet/Met mice and/or cells transfected with the Met allele. Conversely, inhibition of SIRT1 by sirtinol and/or by specific siRNA induced the prothrombotic/proinflammatory phenotype in WT mice and cells. Finally, we found that BDNF Met homozygosity is associated with increased risk of acute myocardial infarction (AMI) in humans. Conclusion Activation of platelets, alteration in coagulation pathways, and changes in vessel wall protein expression in BDNFMet/Met mice recapitulate well the features occurring in the anxiety/depression condition. Furthermore, our data suggest that the BDNFVal66Met polymorphism contribute to the individual propensity for arterial thrombosis related to AMI.


Neuropsychopharmacology | 2016

Brain-Derived Neurotrophic Factor Val66Met Human Polymorphism Impairs the Beneficial Exercise-Induced Neurobiological Changes in Mice

Alessandro Ieraci; Alessandro I Madaio; Alessandra Mallei; Francis S. Lee; Maurizio Popoli

Several studies have shown that exercise improves cognitive functions and emotional behaviors. Positive effects of exercise have been associated with enhanced brain plasticity, adult hippocampal neurogenesis, and increased levels of brain-derived neurotrophic factor (BDNF). However, a substantial variability of individual response to exercise has been described, which may be accounted for by individual genetic variants. Here, we have assessed whether and how the common human BDNF Val66Met polymorphism influences the neurobiological effects modulated by exercise in BDNF Val66Met knock-in male mice. Wild-type (BDNFVal/Val) and homozygous BDNF Val66Met (BDNFMet/Met) male mice were housed in cages equipped with or without running wheels for 4 weeks. Changes in behavioral phenotype, hippocampal adult neurogenesis, and gene expression were evaluated in exercised and sedentary control mice. We found that exercise reduced the latency to feed in the novelty suppressed feeding and the immobility time in the forced swimming test in BDNFVal/Val but not in BDNFMet/Met mice. Hippocampal neurogenesis was reduced in BDNFMet/Met mice compared with BDNFVal/Val mice. BDNFMet/Met mice had lower basal BDNF protein levels in the hippocampus, which was not recovered following exercise. Moreover, exercise-induced expression of total BDNF, BDNF splice variants 1, 2, 4, 6 and fibronectin type III domain-containing protein 5 (FNDC5) mRNA levels were absent or reduced in the dentate gyrus of BDNFMet/Met mice. Exercise failed to enhance PGC-1α and FNDC5 mRNA levels in the BDNFMet/Met muscle. Overall these results indicate that, in adult male mice, the BDNF Val66Met polymorphism impairs the beneficial behavioral and neuroplasticity effects induced by physical exercise.


The International Journal of Neuropsychopharmacology | 2015

Expression and Dendritic Trafficking of BDNF-6 Splice Variant are Impaired in Knock-In Mice Carrying Human BDNF Val66Met Polymorphism

Alessandra Mallei; Gabriele Baj; Alessandro Ieraci; Stefano Corna; Laura Musazzi; Francis S. Lee; Enrico Tongiorgi; Maurizio Popoli

Background: The human Val66Met polymorphism in brain-derived neurotrophic factor (BDNF), a key factor in neuroplasticity, synaptic function, and cognition, has been implicated in the pathophysiology of neuropsychiatric and neurodegenerative disorders. BDNF is encoded by multiple transcripts with distinct regulation and localization, but the impact of the Val66Met polymorphism on BDNF regulation remains unclear. Methods: In BDNF Val66Met knock-in mice, which recapitulate the phenotypic hallmarks of individuals carrying the BDNFMet allele, we measured expression levels, epigenetic changes at promoters, and dendritic trafficking of distinct BDNF transcripts using quantitative PCR, chromatin immunoprecipitation (ChIP), and in situ hybridization. Results: BDNF-4 and BDNF-6 transcripts were reduced in BDNFMet/Met mice, compared with BDNFVal/Val mice. ChIP for acetyl-histone H3, a marker of active gene transcription, and trimethyl-histone-H3-Lys27 (H3K27me3), a marker of gene repression, showed higher H3K27me3 binding to exon 5, 6, and 8 promoters in BDNFMet/Met. The H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) is involved in epigenetic regulation of BDNF expression, because in neuroblastoma cells BDNF expression was increased both by short interference RNA for EZH2 and incubation with 3-deazaneplanocin A, an inhibitor of EZH2. In situ hybridization for BDNF-2, BDNF-4, and BDNF-6 after pilocarpine treatment showed that BDNF-6 transcript was virtually absent from distal dendrites of the CA1 and CA3 regions in BDNFMet/Met mice, while no changes were found for BDNF-2 and BDNF-4. Conclusions: Impaired BDNF expression and dendritic targeting in BDNFMet/Met mice may contribute to reduced regulated secretion of BDNF at synapses, and may be a specific correlate of pathology in individuals carrying the Met allele.


World Journal of Biological Psychiatry | 2018

Chronic social defeat stress differentially regulates the expression of BDNF transcripts and epigenetic modifying enzymes in susceptible and resilient mice

Alessandra Mallei; Alessandro Ieraci; Maurizio Popoli

Abstract Objectives: Although stress is considered a primary risk factor for neuropsychiatric disorders, a majority of individuals are resilient to the effects of stress exposure and successfully adapt to adverse life events, while others, the so-called susceptible individuals, may have problems to properly adapt to environmental changes. However, the mechanisms underlying these different responses to stress exposure are poorly understood. Methods: Adult male C57BL/6J mice were exposed to chronic social defeat stress protocol and levels of brain derived neurotrophic factor (BDNF) transcripts and epigenetic modifying enzymes were analysed by real-time PCR in the hippocampus (HPC) and prefrontal cortex (PFC) of susceptible and resilient mice. Results: We found a selective reduction of BDNF-6 transcript in the HPC and an increase of BDNF-4 transcript in the PFC of susceptible mice. Moreover, susceptible mice showed a selective reduction of the g9a mRNA levels in the HPC, while HDAC-5 and DNMT3a mRNA levels were specifically reduced in the PFC. Conclusions: Overall, our results, showing a different expression of BDNF transcripts and epigenetic modifying enzymes in susceptible and resilient mice, suggest that stress resilience is not simply a lack of activation of stress-related pathways, but is related to the activation of additional different specific mechanisms.


Oxidative Medicine and Cellular Longevity | 2017

Apocynin Prevents Abnormal Megakaryopoiesis and Platelet Activation Induced by Chronic Stress

Leonardo Sandrini; Alessandro Ieraci; Patrizia Amadio; Maurizio Popoli; Elena Tremoli; Silvia S. Barbieri

Environmental chronic stress (ECS) has been identified as a trigger of acute coronary syndromes (ACS). Changes in redox balance, enhanced reactive oxygen species (ROS) production, and platelet hyperreactivity were detected in both ECS and ACS. However, the mechanisms by which ECS predisposes to thrombosis are not fully understood. Here, we investigated the impact of ECS on platelet activation and megakaryopoiesis in mice and the effect of Apocynin in this experimental setting. ECS induced by 4 days of forced swimming stress (FSS) treatment predisposed to arterial thrombosis and increased oxidative stress (e.g., plasma malondialdehyde levels). Interestingly, Apocynin treatment prevented these alterations. In addition, FSS induced abnormal megakaryopoiesis increasing the number and the maturation state of bone marrow megakaryocytes (MKs) and affecting circulating platelets. In particular, a higher number of large and reticulated platelets with marked functional activation were detected after FSS. Apocynin decreased the total MK number and prevented their ability to generate ROS without affecting the percentage of CD42d+ cells, and it reduced the platelet hyperactivation in stressed mice. In conclusion, Apocynin restores the physiological megakaryopoiesis and platelet behavior, preventing the detrimental effect of chronic stress on thrombosis, suggesting its potential use in the occurrence of thrombosis associated with ECS.

Collaboration


Dive into the Alessandro Ieraci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge