Alessandro Marrone
University of Chieti-Pescara
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alessandro Marrone.
Journal of Medicinal Chemistry | 2008
Angela Casini; Chiara Gabbiani; Francesca Sorrentino; Maria Pia Rigobello; Alberto Bindoli; Tifimann J. Geldbach; Alessandro Marrone; Nazzareno Re; Christian G. Hartinger; Paul J. Dyson; Luigi Messori
A series of ruthenium(II)-arene (RAPTA) compounds were evaluated for their ability to inhibit thioredoxin reductase (either cytosolic or mitochondrial) and cathepsin B, two possible targets for anticancer metallodrugs. In general, inhibition of the thioredoxin reductases was lower than that of cathepsin B, although selected compounds were excellent inhibitors of both classes of enzymes in comparison to other metal-based drugs. Some initial structure-activity relationships could be established. On the basis of the obtained data, different mechanisms of binding/inhibition appear to be operative; remarkably the selectivity of the ruthenium compounds toward solid metastatic tumors also correlates to the observed trends. Notably, docking studies of the interactions of representative RAPTA compounds with cathepsin B were performed that provided realistic structures for the resulting protein-metallodrug adducts. Good agreement was generally found between the inhibiting potency of the RAPTA compounds and the computed stability of the corresponding cat B/RAPTA adducts.
PLOS ONE | 2012
Ana Paula Martins; Alessandro Marrone; Antonella Ciancetta; Ana Galán Cobo; Miriam Echevarría; Teresa F. Moura; Nazzareno Re; Angela Casini; Graça Soveral
Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC50 = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.
ChemMedChem | 2013
Ana Paula Martins; Antonella Ciancetta; Andreia de Almeida; Alessandro Marrone; Nazzareno Re; Graça Soveral; Angela Casini
Aquaporins (AQPs) are membrane water/glycerol channels with essential roles in biological systems, as well as being promising targets for therapy and imaging. Using a stopped‐flow method, a series of gold(III), platinum(II) and copper(II) complexes bearing nitrogen donor ligands, such as 1,10‐phenatroline, 2,2′‐bipyridine, 4,4′‐dimethyl‐2,2′‐bipyridine, 4,4′‐diamino‐2,2′‐bipyridine and 2,2′;6′,2“‐terpyridine, were evaluated in human red blood cells expressing AQP1 and AQP3, responsible for water and glycerol movement, respectively. The results showed that the gold(III) complexes selectively modulate AQP3 over AQP1. Molecular modeling and density functional theory (DFT) calculations were subsequently performed to rationalize the observations and to investigate the possible molecular mechanism through which these gold compounds act on their putative target (AQP3). In the absence of any crystallographic data, a previously reported homology model was used for this purpose. Combined, the findings of this study show that potent and selective modulation of these solute channels is possible, however further investigation is required into the selectivity of this class of agents against all AQP isoforms and their potential therapeutic uses.
Chemistry: A European Journal | 2009
Alessandro Marrone; Andrea Renzetti; Paolo De Maria; Stéphane Gérard; Janos Sapi; Antonella Fontana; Nazzareno Re
The condensation of dialkyl beta-diesters with various aldehydes promoted by TiCl4 has been studied by DFT approaches and experimental methods, including NMR, IR and UV/Vis spectroscopy. Various possible reaction pathways have been investigated and their energy profiles evaluated to find out a plausible mechanism of the reaction. Theoretical results and experimental evidence point to a three-step mechanism: 1) Ti-induced formation of the enolate ion; 2) aldol reaction between the enolate ion and the aldehyde, both coordinated to titanium; and 3) intramolecular elimination that leads to a titanyl complex. The presented mechanistic hypothesis allows one to better understand the pivotal role of titanium(IV) in the reaction.
Journal of the American Chemical Society | 2010
Piero Mastrorilli; Mario Latronico; Vito Gallo; Flavia Polini; Nazzareno Re; Alessandro Marrone; Roberto Gobetto; Silvano Ellena
The phosphinito-bridged Pt(I) complex [(PHCy(2))Pt(mu-PCy(2)){kappa(2)P,O-mu-P(O)Cy(2)}Pt(PHCy(2))](Pt-Pt) (1) reversibly adds H(2) under ambient conditions, giving cis-[(H)(PHCy(2))Pt(1)(mu-PCy(2))(mu-H)Pt(2)(PHCy(2)){kappaP-P(O)Cy(2)}](Pt-Pt) (2). Complex 2 slowly isomerizes spontaneously into the corresponding more stable isomer trans-[(PHCy(2))(H)Pt(mu-PCy(2))(mu-H)Pt(PHCy(2)){kappaP-P(O)Cy(2)}](Pt-Pt) (3). DFT calculations indicate that the reaction of 1 with H(2) occurs through an initial heterolytic splitting of the H(2) molecule assisted by the phosphinito oxygen with breaking of the Pt-O bond and hydrogenation of the Pt and O atoms, leading to the formation of the intermediate [(PHCy(2))(H)Pt(mu-PCy(2))Pt(PHCy(2)){kappaP-P(OH)Cy(2)}](Pt-Pt) (D), where the two split hydrogen atoms interact within a six-membered Pt-H...H-O-P-Pt ring. Compound D is a labile intermediate which easily evolves into the final dihydride complex 2 through a facile (9-15 kcal mol(-1), depending on the solvent) hydrogen shift from the phosphinito oxygen to the Pt-Pt bond. Information obtained by addition of para-H(2) on 1 are in agreement with the presence of a heterolytic pathway in the 1 --> 2 transformation. NMR experiments and DFT calculations also gave evidence for the nonclassical dihydrogen complex [(PHCy(2))(eta(2)-H(2))Pt(mu-PCy(2))Pt(PHCy(2)){kappaP-P(O)Cy(2)}](Pt-Pt) (4), which is an intermediate in the dehydrogenation of 2 to 1 and is also involved in intramolecular and intermolecular exchange processes. Experimental and DFT studies showed that the isomerization 2 --> 3 occurs via an intramolecular mechanism essentially consisting of the opening of the Pt-Pt bond and of the hydrogen bridge followed by the rotation of the coordination plane of the Pt center with the terminal hydride ligand.
Accounts of Chemical Research | 2012
Cecilia Coletti; Alessandro Marrone; Nazzareno Re
Transition metal complexes containing unsaturated carbenes have enjoyed a recent surge in research interest. In addition to showing potential as molecular wires and as components of opto-electronic materials, they provide multifaceted reactive sites for organic synthesis. In this Account, we describe results of recent theoretical studies that delineate the main features of electronic structure and bonding in allenylidenes and higher cumulenylidene complexes, [L(m)M]═C(═C)(n)═CR(1)R(2) (where L represents the ligand, M the metal, and n ≥ 1). Although free cumulenylidene ligands, :C(═C)(n)═CR(1)R(2), are extremely unstable and reactive species, they can be stabilized by coordination to a transition metal. The σ-donation of the electron lone pair on the terminal carbon atom to an empty metal d-orbital, together with the simultaneous π back-donation from filled metal d(π)-orbitals to empty cumulene π* system orbitals, leads to the formation of a strong M═C bond with multiple character. Density functional theory studies on the model systems [(CO)(5)Cr(═C)(n)CH(2)] and [trans-Cl(PH(3))(4)Ru(═C)(n)CH(2)](+) (where n = 1-9) have been useful in interpreting the structural and spectroscopic properties and the reactivity of this class of complexes. Geometry optimizations significantly contributed to the generalization of the sparse structural data available for allenylidene, butatrienylidene, and pentatetraenylidene complexes to higher cumulenylidene complexes (with up to eight carbon atoms in the chain), which show a clear structural trend. In particular, the geometries of all even-chain cumulenes are consistent with an almost purely cumulenic structure, whereas the geometries of odd-chain cumulenes present a significant polyyne-like carbon-carbon bond length alternation. The calculated bond dissociation energies (BDEs) of the cumulenylidene ligand remain almost constant on lengthening the cumulene chain. These BDEs indicate that there is no thermodynamic upper limit to the cumulene chain length and suggest that the synthetic difficulties in preparing higher cumulenylidenes are due to an increase in reactivity. The calculated charges on the carbon atoms show no significant polarization along the cumulene chain, indicating that charge distribution is not important in determining the regioselectivity of either electrophilic or nucleophilic attack, which is instead determined by frontier orbital factors. The breakdown of the contributions from the metal and the carbon atoms along the chain to the HOMO and LUMO shows that the HOMO has contributions mainly from the metal and the carbon atoms in even positions along the chain (C(2), C(4), C(6), and higher). In contrast, the LUMO has contributions mainly from the carbon atoms in odd positions along the chain (C(1), C(3), C(5), and higher), thus explaining the experimentally observed regioselectivity of electrophilic and nucleophilic attacks, which are directed, respectively, to even and odd positions of the cumulenylidene chain. The study of the electronic structure of cumulenylidenes has allowed us not only to give a consistent rationale for the main structural and spectroscopic properties and for the reactivity of this emerging class of compounds but also to predict the effect of ancillary ligands on the metal center or substituents on the carbon end. The result is a useful guide to new developments in the still-underexplored fields of this fascinating class of compounds.
PLOS ONE | 2012
Sacha Sorrentino; Tonino Bucciarelli; Alessandro Corsaro; Alessio Tosatto; Stefano Thellung; Valentina Villa; M. Eugenia Schininà; Bruno Maras; Roberta Galeno; Luca Scotti; Francesco Creati; Alessandro Marrone; Nazzareno Re; Antonio Aceto; Tullio Florio; Michele Mazzanti
The pathological form of prion protein (PrPSc), as other amyloidogenic proteins, causes a marked increase of membrane permeability. PrPSc extracted from infected Syrian hamster brains induces a considerable change in membrane ionic conductance, although the contribution of this interaction to the molecular mechanism of neurodegeneration process is still controversial. We previously showed that the human PrP fragment 90–231 (hPrP90–231) increases ionic conductance across artificial lipid bilayer, in a calcium-dependent manner, producing an alteration similar to that observed for PrPSc. In the present study we demonstrate that hPrP90–231, pre-incubated with 10 mM Ca++ and then re-suspended in physiological external solution increases not only membrane conductance but neurotoxicity as well. Furthermore we show the existence of a direct link between these two effects as demonstrated by a highly statistically significant correlation in several experimental conditions. A similar correlation between increased membrane conductance and cell degeneration has been observed assaying hPrP90–231 bearing pathogenic mutations (D202N and E200K). We also report that Ca++ binding to hPrP90–231 induces a conformational change based on an alteration of secondary structure characterized by loss of alpha-helix content causing hydrophobic amino acid exposure and proteinase K resistance. These features, either acquired after controlled thermal denaturation or induced by D202N and E200K mutations were previously identified as responsible for hPrP90–231 cytotoxicity. Finally, by in silico structural analysis, we propose that Ca++ binding to hPrP90–231 modifies amino acid orientation, in the same way induced by E200K mutation, thus suggesting a pathway for the structural alterations responsible of PrP neurotoxicity.
ChemMedChem | 2006
Daniele Bellocchi; Gabriele Costantino; Roberto Pellicciari; Nazzareno Re; Alessandro Marrone; Cecilia Coletti
Poly(ADP‐ribose) polymerase (PARP) is a nuclear enzyme which uses NAD+ as substrate and catalyzes the transfer of multiple units of ADP‐ribose to target proteins. PARP is an attractive target for the discovery of novel therapeutic agents and PARP inhibitors are currently evaluated for the treatment of a variety of pathological conditions such as brain ischemia, inflammation, and cancer. Herein, we use the PARP‐catalyzed reaction of NAD+ hydrolysis as a model for gaining insight into the molecular details of the catalytic mechanism of PARP. The reaction has been studied in both the gas‐phase and in the enzyme environment through a QM/MM approach. Our results indicate that the cleavage reaction of the nicotinamide‐ribosyl bond proceeds through an SN2 dissociative mechanism via an oxacarbenium transition structure. These results confirm the importance of the structural water molecule in the active site and may constitute the basis for the design of transition‐state‐based PARP inhibitors.
Chemistry: A European Journal | 2017
Valentina Graziani; Alessandro Marrone; Nazzareno Re; Cecilia Coletti; James Alexis Platts; Angela Casini
Structural studies have paved the avenue to a deeper understanding of aquaporins (AQPs), small ancient proteins providing efficient transmembrane pathways for water, small uncharged solutes such as glycerol, and possibly gas molecules. Despite the numerous studies, their roles in health and disease remain to be fully disclosed. The recent discovery of AuIII complexes as potent and selective inhibitors of aquaglyceroporin isoforms paves the way to their possible therapeutic application. The binding of the selective human AQP3 inhibitor, the cationic complex [Au(bipy)Cl2 ]+ (Aubipy), to the protein channel has been investigated here by means of a multi-level theoretical workflow that includes QM, MD and QM/MM approaches. The hydroxo complex was identified as the prevalent form of Aubipy in physiological media and its binding to AQP3 studied by MD. Both non-covalent and coordinative Aubipy-AQP3 adducts were simulated to probe their role in the modulation of water channel functionality. The electronic structures of representative Aubipy-AQP3 adducts were then analysed to unveil the role played by the metal moiety in their stabilisation. This study spotlights the overall importance of three key aspects for AQP3 inhibition: 1) water speciation of the AuIII complex, 2) stability of non-covalent adducts and 3) conformational changes induced within the pore by the coordinative binding of AuIII . The obtained results are expected to orient future developments in the design of isoform-selective AuIII inhibitors.
Journal of Physical Chemistry A | 2016
Valentina Graziani; Cecilia Coletti; Alessandro Marrone; Nazzareno Re
The reactivity of a bispidine, 3,7-diazabicyclo[3.3.1]nonane, analogue of cisplatin, a new anticancer drug with promising properties, is theoretically investigated to clarify the in vitro reactivity and in vivo mechanism of action of this compound. Thermodynamics and kinetics of the first and second aquation steps and of the reaction of the generated mono- and diaqua species with guanine, the main target of the platinum based antitumor compounds, have been studied. In agreement with the experimental evidence, the bispidine analogue is significantly less reactive than cisplatin toward aquation but the formed aquaspecies show a good reactivity with guanine, consistently with the promising anticancer properties of these new compounds.