Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Moschitti is active.

Publication


Featured researches published by Alessandro Moschitti.


meeting of the association for computational linguistics | 2004

A Study on Convolution Kernels for Shallow Statistic Parsing

Alessandro Moschitti

In this paper we have designed and experimented novel convolution kernels for automatic classification of predicate arguments. Their main property is the ability to process structured representations. Support Vector Machines (SVMs), using a combination of such kernels and the flat feature kernel, classify Prop-Bank predicate arguments with accuracy higher than the current argument classification state-of-the-art.Additionally, experiments on FrameNet data have shown that SVMs are appealing for the classification of semantic roles even if the proposed kernels do not produce any improvement.


international acm sigir conference on research and development in information retrieval | 2015

Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks

Aliaksei Severyn; Alessandro Moschitti

Learning a similarity function between pairs of objects is at the core of learning to rank approaches. In information retrieval tasks we typically deal with query-document pairs, in question answering -- question-answer pairs. However, before learning can take place, such pairs needs to be mapped from the original space of symbolic words into some feature space encoding various aspects of their relatedness, e.g. lexical, syntactic and semantic. Feature engineering is often a laborious task and may require external knowledge sources that are not always available or difficult to obtain. Recently, deep learning approaches have gained a lot of attention from the research community and industry for their ability to automatically learn optimal feature representation for a given task, while claiming state-of-the-art performance in many tasks in computer vision, speech recognition and natural language processing. In this paper, we present a convolutional neural network architecture for reranking pairs of short texts, where we learn the optimal representation of text pairs and a similarity function to relate them in a supervised way from the available training data. Our network takes only words in the input, thus requiring minimal preprocessing. In particular, we consider the task of reranking short text pairs where elements of the pair are sentences. We test our deep learning system on two popular retrieval tasks from TREC: Question Answering and Microblog Retrieval. Our model demonstrates strong performance on the first task beating previous state-of-the-art systems by about 3\% absolute points in both MAP and MRR and shows comparable results on tweet reranking, while enjoying the benefits of no manual feature engineering and no additional syntactic parsers.


european conference on machine learning | 2006

Efficient convolution kernels for dependency and constituent syntactic trees

Alessandro Moschitti

In this paper, we provide a study on the use of tree kernels to encode syntactic parsing information in natural language learning. In particular, we propose a new convolution kernel, namely the Partial Tree (PT) kernel, to fully exploit dependency trees. We also propose an efficient algorithm for its computation which is futhermore sped-up by applying the selection of tree nodes with non-null kernel. The experiments with Support Vector Machines on the task of semantic role labeling and question classification show that (a) the kernel running time is linear on the average case and (b) the PT kernel improves on the other tree kernels when applied to the appropriate parsing paradigm.


european conference on information retrieval | 2004

Complex Linguistic Features for Text Classification: A Comprehensive Study

Alessandro Moschitti; Roberto Basili

Previous researches on advanced representations for document retrieval have shown that statistical state-of-the-art models are not improved by a variety of different linguistic representations. Phrases, word senses and syntactic relations derived by Natural Language Processing (NLP) techniques were observed ineffective to increase retrieval accuracy. For Text Categorization (TC) are available fewer and less definitive studies on the use of advanced document representations as it is a relatively new research area (compared to document retrieval).


Computational Linguistics | 2008

Tree kernels for semantic role labeling

Alessandro Moschitti; Daniele Pighin; Roberto Basili

The availability of large scale data sets of manually annotated predicate-argument structures has recently favored the use of machine learning approaches to the design of automated semantic role labeling (SRL) systems. The main research in this area relates to the design choices for feature representation and for effective decompositions of the task in different learning models. Regarding the former choice, structural properties of full syntactic parses are largely employed as they represent ways to encode different principles suggested by the linking theory between syntax and semantics. The latter choice relates to several learning schemes over global views of the parses. For example, re-ranking stages operating over alternative predicate-argument sequences of the same sentence have shown to be very effective. In this article, we propose several kernel functions to model parse tree properties in kernel-based machines, for example, perceptrons or support vector machines. In particular, we define different kinds of tree kernels as general approaches to feature engineering in SRL. Moreover, we extensively experiment with such kernels to investigate their contribution to individual stages of an SRL architecture both in isolation and in combination with other traditional manually coded features. The results for boundary recognition, classification, and re-ranking stages provide systematic evidence about the significant impact of tree kernels on the overall accuracy, especially when the amount of training data is small. As a conclusive result, tree kernels allow for a general and easily portable feature engineering method which is applicable to a large family of natural language processing tasks.


international acm sigir conference on research and development in information retrieval | 2015

Twitter Sentiment Analysis with Deep Convolutional Neural Networks

Aliaksei Severyn; Alessandro Moschitti

This paper describes our deep learning system for sentiment analysis of tweets. The main contribution of this work is a new model for initializing the parameter weights of the convolutional neural network, which is crucial to train an accurate model while avoiding the need to inject any additional features. Briefly, we use an unsupervised neural language model to train initial word embeddings that are further tuned by our deep learning model on a distant supervised corpus. At a final stage, the pre-trained parameters of the network are used to initialize the model. We train the latter on the supervised training data recently made available by the official system evaluation campaign on Twitter Sentiment Analysis organized by Semeval-2015. A comparison between the results of our approach and the systems participating in the challenge on the official test sets, suggests that our model could be ranked in the first two positions in both the phrase-level subtask A (among 11 teams) and on the message-level subtask B (among 40 teams). This is an important evidence on the practical value of our solution.


empirical methods in natural language processing | 2009

Convolution Kernels on Constituent, Dependency and Sequential Structures for Relation Extraction

Truc-Vien T. Nguyen; Alessandro Moschitti; Giuseppe Riccardi

This paper explores the use of innovative kernels based on syntactic and semantic structures for a target relation extraction task. Syntax is derived from constituent and dependency parse trees whereas semantics concerns to entity types and lexical sequences. We investigate the effectiveness of such representations in the automated relation extraction from texts. We process the above data by means of Support Vector Machines along with the syntactic tree, the partial tree and the word sequence kernels. Our study on the ACE 2004 corpus illustrates that the combination of the above kernels achieves high effectiveness and significantly improves the current state-of-the-art.


conference on information and knowledge management | 2008

Kernel methods, syntax and semantics for relational text categorization

Alessandro Moschitti

Previous work on Natural Language Processing for Information Retrieval has shown the inadequateness of semantic and syntactic structures for both document retrieval and categorization. The main reason is the high reliability and effectiveness of language models, which are sufficient to accurately solve such retrieval tasks. However, when the latter involve the computation of relational semantics between text fragments simple statistical models may result ineffective. In this paper, we show that syntactic and semantic structures can be used to greatly improve complex categorization tasks such as determining if an answer correctly responds to a question. Given the high complexity of representing semantic/syntactic structures in learning algorithms, we applied kernel methods along with Support Vector Machines to better exploit the needed relational information. Our experiments on answer classification on Web and TREC data show that our models greatly improve on bag-of-words.


meeting of the association for computational linguistics | 2006

Semantic Role Labeling via FrameNet, VerbNet and PropBank

Ana Maria Giuglea; Alessandro Moschitti

This article describes a robust semantic parser that uses a broad knowledge base created by interconnecting three major resources: FrameNet, VerbNet and PropBank. The FrameNet corpus contains the examples annotated with semantic roles whereas the VerbNet lexicon provides the knowledge about the syntactic behavior of the verbs. We connect VerbNet and FrameNet by mapping the FrameNet frames to the VerbNet Intersective Levin classes. The PropBank corpus, which is tightly connected to the VerbNet lexicon, is used to increase the verb coverage and also to test the effectiveness of our approach. The results indicate that our model is an interesting step towards the design of more robust semantic parsers.


IEEE Transactions on Audio, Speech, and Language Processing | 2011

Comparing Stochastic Approaches to Spoken Language Understanding in Multiple Languages

Stefan Hahn; Marco Dinarelli; Christian Raymond; Fabrice Lefèvre; Patrick Lehnen; R. De Mori; Alessandro Moschitti; Hermann Ney; Giuseppe Riccardi

One of the first steps in building a spoken language understanding (SLU) module for dialogue systems is the extraction of flat concepts out of a given word sequence, usually provided by an automatic speech recognition (ASR) system. In this paper, six different modeling approaches are investigated to tackle the task of concept tagging. These methods include classical, well-known generative and discriminative methods like Finite State Transducers (FSTs), Statistical Machine Translation (SMT), Maximum Entropy Markov Models (MEMMs), or Support Vector Machines (SVMs) as well as techniques recently applied to natural language processing such as Conditional Random Fields (CRFs) or Dynamic Bayesian Networks (DBNs). Following a detailed description of the models, experimental and comparative results are presented on three corpora in different languages and with different complexity. The French MEDIA corpus has already been exploited during an evaluation campaign and so a direct comparison with existing benchmarks is possible. Recently collected Italian and Polish corpora are used to test the robustness and portability of the modeling approaches. For all tasks, manual transcriptions as well as ASR inputs are considered. Additionally to single systems, methods for system combination are investigated. The best performing model on all tasks is based on conditional random fields. On the MEDIA evaluation corpus, a concept error rate of 12.6% could be achieved. Here, additionally to attribute names, attribute values have been extracted using a combination of a rule-based and a statistical approach. Applying system combination using weighted ROVER with all six systems, the concept error rate (CER) drops to 12.0%.

Collaboration


Dive into the Alessandro Moschitti's collaboration.

Top Co-Authors

Avatar

Roberto Basili

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabio Massimo Zanzotto

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge