Alessandro Nonis
Vita-Salute San Raffaele University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alessandro Nonis.
American Journal of Respiratory and Critical Care Medicine | 2009
Alessandra Bragonzi; Moira Paroni; Alessandro Nonis; Nina Cramer; Sara Montanari; Joanna Rejman; Clelia Di Serio; Gerd Döring; Burkhard Tümmler
RATIONALE During long-term lung infection in patients with cystic fibrosis (CF), Pseudomonas aeruginosa strains develop mutations leading to clonal expansion. This microevolution is believed to be correlated with a reduced virulence. OBJECTIVES We tested this hypothesis in models of lung infection, using mice with different genetic backgrounds. METHODS From infected airways of six patients with CF, 25 P. aeruginosa clones were isolated during a period of up to 16.3 years and genotypically and phenotypically characterized. Virulence of the 8 early, 6 intermediate, and 11 late CF isolates and 5 environmental strains was assessed by monitoring acute mortality versus survival and P. aeruginosa chronic persistence versus lung clearance in mice of different genetic backgrounds, including CF mice. MEASUREMENTS AND MAIN RESULTS Different patients harbored clonally unrelated strains, but early, intermediate, and late P. aeruginosa isolates from single patients were clonally related, allowing comparative in vivo analysis. Although late isolates were attenuated in causing acute mortality in the mouse models, compared with early and intermediate clonal isolates and environmental strains, they did not differ from early and intermediate clonal isolates in their capacity to establish chronic infection and cause extensive inflammation in the murine respiratory tract. CONCLUSIONS Our findings indicate that clonal expansion of P. aeruginosa strains during microevolution within CF lungs leads to populations with altered but not reduced virulence. These P. aeruginosa clones with adapted virulence play a critical role in the pathogenesis of chronic infections and may serve to define virulence determinants as targets for novel therapies.
Molecular Therapy | 2014
Daniela Cesana; Marco Ranzani; Monica Volpin; Cynthia C. Bartholomae; Caroline Duros; Alexandre Artus; Stefania Merella; Fabrizio Benedicenti; Lucia Sergi Sergi; Francesca Sanvito; Chiara Brombin; Alessandro Nonis; Clelia Di Serio; Claudio Doglioni; Christof von Kalle; Manfred Schmidt; Odile Cohen-Haguenauer; Luigi Naldini; Eugenio Montini
Self-inactivating (SIN) lentiviral vectors (LV) have an excellent therapeutic potential as demonstrated in preclinical studies and clinical trials. However, weaker mechanisms of insertional mutagenesis could still pose a significant risk in clinical applications. Taking advantage of novel in vivo genotoxicity assays, we tested a battery of LV constructs, including some with clinically relevant designs, and found that oncogene activation by promoter insertion is the most powerful mechanism of early vector-induced oncogenesis. SIN LVs disabled in their capacity to activate oncogenes by promoter insertion were less genotoxic and induced tumors by enhancer-mediated activation of oncogenes with efficiency that was proportional to the strength of the promoter used. On the other hand, when enhancer activity was reduced by using moderate promoters, oncogenesis by inactivation of tumor suppressor gene was revealed. This mechanism becomes predominant when the enhancer activity of the internal promoter is shielded by the presence of a synthetic chromatin insulator cassette. Our data provide both mechanistic insights and quantitative readouts of vector-mediated genotoxicity, allowing a relative ranking of different vectors according to these features, and inform current and future choices of vector design with increasing biosafety.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Alessia Capotondo; Rita Milazzo; Letterio S. Politi; Angelo Quattrini; Alessio Palini; Tiziana Plati; Stefania Merella; Alessandro Nonis; Clelia Di Serio; Eugenio Montini; Luigi Naldini; Alessandra Biffi
The recent hypothesis that postnatal microglia are maintained independently of circulating monocytes by local precursors that colonize the brain before birth has relevant implications for the treatment of various neurological diseases, including lysosomal storage disorders (LSDs), for which hematopoietic cell transplantation (HCT) is applied to repopulate the recipient myeloid compartment, including microglia, with cells expressing the defective functional hydrolase. By studying wild-type and LSD mice at diverse time-points after HCT, we showed the occurrence of a short-term wave of brain infiltration by a fraction of the transplanted hematopoietic progenitors, independently from the administration of a preparatory regimen and from the presence of a disease state in the brain. However, only the use of a conditioning regimen capable of ablating functionally defined brain-resident myeloid precursors allowed turnover of microglia with the donor, mediated by local proliferation of early immigrants rather than entrance of mature cells from the circulation.
American Journal of Sports Medicine | 2014
Pietro Ciampi; Celeste Scotti; Alessandro Nonis; Matteo Vitali; Clelia Di Serio; Giuseppe M. Peretti; Gianfranco Fraschini
Background: Rotator cuff repair typically results in a satisfactory, although variable, clinical outcome. However, anatomic failure of the repaired tendon often occurs. Hypothesis: Patch augmentation can improve the results of open rotator cuff repair by supporting the healing process, protecting the suture, and reducing friction in the subacromial space. Study Design: Cohort study; Level of evidence, 3. Methods: A total of 152 patients with a posterosuperior massive rotator cuff tear were treated by open repair only (control group; n = 51; mean age, 67.06 ± 4.42 years), open repair together with collagen patch augmentation (collagen group; n = 49; mean age, 66.53 ± 5.17 years), or open repair together with polypropylene patch augmentation (polypropylene group; n = 52; mean age, 66.17 ± 5.44 years) and were retrospectively studied. Patients were evaluated preoperatively and after 36 months with a visual analog scale (VAS) and the University of California, Los Angeles (UCLA) shoulder rating scale and by measuring elevation of the scapular plane and strength with a dynamometer. The VAS and UCLA scores were also obtained 2 months postoperatively. Tendon integrity was assessed after 1 year by ultrasound. Patients were homogeneous as per the preoperative assessment. Results: After 2 months, results (mean ± standard deviation) for the control, collagen, and polypropylene groups, respectively, were as follows: VAS scores were 6.96 ± 1.11, 6.46 ± 1.02, and 4.92 ± 0.90, while UCLA scores were 11.29 ± 1.46, 11.40 ± 1.51, and 19.15 ± 1.99. After 36 months, the mean scores for the respective groups were 3.66 ± 1.05, 4.06 ± 1.02, and 3.28 ± 1.10 for the VAS and 14.88 ± 1.98, 14.69 ± 1.99, and 24.61 ± 3.22 for the UCLA scale. In addition, after 36 months, elevation on the scapular plane was 140.68° ± 9.84°, 140.61° ± 12.48°, and 174.71° ± 8.18°, and abduction strength was 8.73 ± 0.54 kg, 9.03 ± 0.60 kg, and 13.79 ± 0.64 kg for the control, collagen, and polypropylene groups, respectively. The retear rate after 12 months was 41% (21/51) for the control group, 51% (25/49) for the collagen group, and 17% (9/52) for the polypropylene group. In particular, the reduced 12-month retear rate and the increased UCLA scores, abduction strength, and elevation at 3-year follow-up were statistically significant for patients treated with a polypropylene patch compared with those treated with repair only or with a collagen patch. Conclusion: Polypropylene patch augmentation of rotator cuff repair was demonstrated to significantly improve the 36-month outcome in terms of function, strength, and retear rate.
Behavioural Neurology | 2007
Alberto Raggi; Sandro Iannaccone; Alessandra Marcone; Valeria Ginex; Paola Ortelli; Alessandro Nonis; Maria Cristina Giusti; Stefano F. Cappa
Introduction. The evidence for the clinical effectiveness of cognitive rehabilitation in patients with Alzheimer’s Disease (AD) is debated. Therefore it is important to collect more evidence about the outcome of non-pharmacological therapy of dementia. Material and Methods. We report data concerning the rehabilitation of 50 patients with probable AD admitted during a 17-month period in a specialized unit. Participants were affected by dementia ranging from mild to severe. The patients were treated with the Reality Orientation Therapy (ROT), integrated, when needed, with individualised cognitive approaches. The results concern: the cognitive status, evaluated by means of the Mini Mental State Examination (MMSE), the functional status, evaluated with the Activity of Daily Living (ADL) scale, the assessment of psychological and behavioural disorders measured with the Neuropsychiatry Inventory (NPI). The cognitive, functional, and psychopathological assessments were administered at admission and discharge. Results. The mean MMSE scores at admission and discharge were respectively 16.06 and 17.54 (Wilcoxon Ranks Test: p = 0.005). Mean ADL scores were 4.86 at admission and 5.02 at discharge (p = 0.011). Mean NPI scores were respectively 21.46 and 12.26 (p = < 0.001). Conclusions. This survey of the 17-month experience suggests that a comprehensive treatment program may have beneficial effects on cognitive, functional, and in particular neuropsychiatric outcomes. The results should be verified with a randomised clinical trial.
Molecular Therapy | 2011
Sergia Bortolanza; Alessandro Nonis; Francesca Sanvito; Simona Maciotta; Giovanni Sitia; Jessica Wei; Yvan Torrente; Clelia Di Serio; Joel R. Chamberlain; Davide Gabellini
Treatment of dominantly inherited muscle disorders remains a difficult task considering the need to eliminate the pathogenic gene product in a body-wide fashion. We show here that it is possible to reverse dominant muscle disease in a mouse model of facioscapulohumeral muscular dystrophy (FSHD). FSHD is a common form of muscular dystrophy associated with a complex cascade of epigenetic events following reduction in copy number of D4Z4 macrosatellite repeats located on chromosome 4q35. Several 4q35 genes have been examined for their role in disease, including FRG1. Overexpression of FRG1 causes features related to FSHD in transgenic mice and the FRG1 mouse is currently the only available mouse model of FSHD. Here we show that systemic delivery of RNA interference expression cassettes in the FRG1 mouse, after the onset of disease, led to a dose-dependent long-term FRG1 knockdown without signs of toxicity. Histological features including centrally nucleated fibers, fiber size reduction, fibrosis, adipocyte accumulation, and inflammation were all significantly improved. FRG1 mRNA knockdown resulted in a dramatic restoration of muscle function. Through RNA interference (RNAi) expression cassette redesign, our method is amenable to targeting any pathogenic gene offering a viable option for long-term, body-wide treatment of dominant muscle disease in humans.
The Journal of Infectious Diseases | 2013
Moira Paroni; Federica Moalli; Manuela Nebuloni; Fabio Pasqualini; Tracey L. Bonfield; Alessandro Nonis; Alberto Mantovani; Cecilia Garlanda; Alessandra Bragonzi
BACKGROUND In cystic fibrosis (CF) patients, chronic lung infection and inflammation due to Pseudomonas aeruginosa contribute to the decline of lung function. The increased prevalence of multidrug resistance among bacteria and the adverse effects of antiinflammatory agents highlight the need for alternative therapeutic approaches that should be tested in a relevant animal model. METHODS Gut-corrected CF and non-CF mice were chronically infected with a multidrug-resistant P. aeruginosa strain and treated with the long pentraxin PTX3. Body weight, bacterial count, inflammation, and lung pathology were evaluated after 12 days. PTX3 localization in CF sputum specimens was analyzed by immunofluorescence. RESULTS Chronic P. aeruginosa infection developed similarly in CF and non-CF mice but differed in terms of the inflammatory response. Leukocyte recruitment in the airways, cytokine levels, and chemokine levels were significantly higher in CF mice, compared with non-CF mice. PTX3 treatment, which facilitates phagocytosis of pathogens, reduced P. aeruginosa colonization and restored airway inflammation in CF mice to levels observed in non-CF mice. The presence of PTX3 in CF sputum, in leukocytes, or bound to P. aeruginosa macrocolonies, as well as previous data on PTX3 polymorphisms in colonized CF patients, confirm the relevance of this molecule. CONCLUSIONS These findings represent a step forward in demonstrating the therapeutic potential of PTX3 in CF.
Scientific Reports | 2016
Cristina Cigana; Nicola Ivan Lorè; Camilla Riva; Ida De Fino; Lorenza Spagnuolo; Barbara Sipione; Giacomo Rossi; Alessandro Nonis; Giulio Cabrini; Alessandra Bragonzi
Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence influence the pathogenesis and disease development. Using in vitro and murine models of infection, we showed that P. aeruginosa CF-adaptive variants shaped the innate immune response favoring their persistence. Next, we refined a murine model of chronic pneumonia extending P. aeruginosa infection up to three months. In this model, including CFTR-deficient mice, we unveil that the P. aeruginosa persistence lead to CF hallmarks of airway remodelling and fibrosis, including epithelial hyperplasia and structure degeneration, goblet cell metaplasia, collagen deposition, elastin degradation and several additional markers of tissue damage. This murine model of P. aeruginosa chronic infection, reproducing CF lung pathology, will be instrumental to identify novel molecular targets and test newly tailored molecules inhibiting chronic inflammation and tissue damage processes in pre-clinical studies.
Biochemical and Biophysical Research Communications | 2011
Alberto Nonis; Marco Scortegagna; Alessandro Nonis; Benedetto Ruperti
An essential pre-requisite to perform sound quantitative real-time polymerase chain reaction (qPCR) assays is to design outstanding primer pairs. This means they must have a good efficiency and be not prone to produce multiple amplicons or primer dimer products. To circumvent these issues, several softwares are available to help primer design. Although satisfactory computer-aided primer design tools are available for standard PCR, less efforts were done to provide specific methods for selection of optimal primer pairs for qPCR. We have developed PRaTo a web-based tool that enables checking and ranking of primers pairs for their attitude to perform optimally and reliably when used in qPCR experiments. PRaTo is available at http://prato.daapv.unipd.it.
Scientific Reports | 2016
Nicola Ivan Lorè; Cristina Cigana; Camilla Riva; Ida De Fino; Alessandro Nonis; Lorenza Spagnuolo; Barbara Sipione; Lisa Cariani; Daniela Girelli; Giacomo Rossi; Veronica Basso; Carla Colombo; Anna Mondino; Alessandra Bragonzi
Resistance and tolerance mechanisms participate to the interplay between host and pathogens. IL-17-mediated response has been shown to be crucial for host resistance to respiratory infections, whereas its role in host tolerance during chronic airway colonization is still unclear. Here, we investigated whether IL-17-mediated response modulates mechanisms of host tolerance during airways chronic infection by P. aeruginosa. First, we found that IL-17A levels were sustained in mice at both early and advanced stages of P. aeruginosa chronic infection and confirmed these observations in human respiratory samples from cystic fibrosis patients infected by P. aeruginosa. Using IL-17a−/− or IL-17ra−/− mice, we found that the deficiency of IL-17A/IL-17RA axis was associated with: i) increased incidence of chronic infection and bacterial burden, indicating its role in the host resistance to P. aeruginosa; ii) reduced cytokine levels (KC), tissue innate immune cells and markers of tissue damage (pro-MMP-9, elastin degradation, TGF-β1), proving alteration of host tolerance. Blockade of IL-17A activity by a monoclonal antibody, started when chronic infection is established, did not alter host resistance but increased tolerance. In conclusion, this study identifies IL-17-mediated response as a negative regulator of host tolerance during P. aeruginosa chronic airway infection.