Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Paiardini is active.

Publication


Featured researches published by Alessandro Paiardini.


BMC Bioinformatics | 2012

PyMod: sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL

Emanuele Bramucci; Alessandro Paiardini; Francesco Bossa; Stefano Pascarella

BackgroundIn recent years, an exponential growing number of tools for protein sequence analysis, editing and modeling tasks have been put at the disposal of the scientific community. Despite the vast majority of these tools have been released as open source software, their deep learning curves often discourages even the most experienced users.ResultsA simple and intuitive interface, PyMod, between the popular molecular graphics system PyMOL and several other tools (i.e., [PSI-]BLAST, ClustalW, MUSCLE, CEalign and MODELLER) has been developed, to show how the integration of the individual steps required for homology modeling and sequence/structure analysis within the PyMOL framework can hugely simplify these tasks. Sequence similarity searches, multiple sequence and structural alignments generation and editing, and even the possibility to merge sequence and structure alignments have been implemented in PyMod, with the aim of creating a simple, yet powerful tool for sequence and structure analysis and building of homology models.ConclusionsPyMod represents a new tool for the analysis and the manipulation of protein sequences and structures. The ease of use, integration with many sequence retrieving and alignment tools and PyMOL, one of the most used molecular visualization system, are the key features of this tool.Source code, installation instructions, video tutorials and a users guide are freely available at the URL http://schubert.bio.uniroma1.it/pymod/index.html


Proceedings of the National Academy of Sciences of the United States of America | 2010

Molecular defects of the glycine 41 variants of alanine glyoxylate aminotransferase associated with primary hyperoxaluria type I

Barbara Cellini; Riccardo Montioli; Alessandro Paiardini; Antonio Lorenzetto; Fabio Maset; Tiziana Bellini; Elisa Oppici; Carla Borri Voltattorni

G41 is an interfacial residue located within the α-helix 34–42 of alanine:glyoxylate aminotransferase (AGT). Its mutations on the major (AGT-Ma) or the minor (AGT-Mi) allele give rise to the variants G41R-Ma, G41R-Mi, and G41V-Ma causing hyperoxaluria type 1. Impairment of dimerization in these variants has been suggested to be responsible for immunoreactivity deficiency, intraperoxisomal aggregation, and sensitivity to proteasomal degradation. However, no experimental evidence supports this view. Here we report that G41 mutations, besides increasing the dimer-monomer equilibrium dissociation constant, affect the protein conformation and stability, and perturb its active site. As compared to AGT-Ma or AGT-Mi, G41 variants display different near-UV CD and intrinsic emission fluorescence spectra, larger exposure of hydrophobic surfaces, sensitivity to Met53-Tyr54 peptide bond cleavage by proteinase K, decreased thermostability, reduced coenzyme binding affinity, and catalytic efficiency. Additionally, unlike AGT-Ma and AGT-Mi, G41 variants under physiological conditions form insoluble inactive high-order aggregates (∼5,000 nm) through intermolecular electrostatic interactions. A comparative molecular dynamics study of the putative structures of AGT-Mi and G41R-Mi predicts that G41 → R mutation causes a partial unwinding of the 34–42 α-helix and a displacement of the first 44 N-terminal residues including the active site loop 24–32. These simulations help us to envisage the possible structural basis of AGT dysfunction associated with G41 mutations. The detailed insight into how G41 mutations act on the structure-function of AGT may contribute to achieve the ultimate goal of correcting the effects of these mutations.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Open conformation of human DOPA decarboxylase reveals the mechanism of PLP addition to Group II decarboxylases

Giorgio Giardina; Riccardo Montioli; Stefano Gianni; Barbara Cellini; Alessandro Paiardini; Carla Borri Voltattorni; Francesca Cutruzzolà

DOPA decarboxylase, the dimeric enzyme responsible for the synthesis of neurotransmitters dopamine and serotonin, is involved in severe neurological diseases such as Parkinson disease, schizophrenia, and depression. Binding of the pyridoxal-5′-phosphate (PLP) cofactor to the apoenzyme is thought to represent a central mechanism for the regulation of its activity. We solved the structure of the human apoenzyme and found it exists in an unexpected open conformation: compared to the pig kidney holoenzyme, the dimer subunits move 20 Å apart and the two active sites become solvent exposed. Moreover, by tuning the PLP concentration in the crystals, we obtained two more structures with different conformations of the active site. Analysis of three-dimensional data coupled to a kinetic study allows to identify the structural determinants of the open/close conformational change occurring upon PLP binding and thereby propose a model for the preferential degradation of the apoenzymes of Group II decarboxylases.


Journal of Biological Chemistry | 2009

Molecular Insight into the Synergism between the Minor Allele of Human Liver Peroxisomal Alanine:Glyoxylate Aminotransferase and the F152I Mutation

Barbara Cellini; Riccardo Montioli; Alessandro Paiardini; Antonio Lorenzetto; Carla Borri Voltattorni

Human liver peroxisomal alanine:glyoxylate aminotransferase (AGT) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that converts glyoxylate into glycine. AGT deficiency causes primary hyperoxaluria type 1 (PH1), a rare autosomal recessive disorder, due to a marked increase in hepatic oxalate production. Normal human AGT exists as two polymorphic variants: the major (AGT-Ma) and the minor (AGT-Mi) allele. AGT-Mi causes the PH1 disease only when combined with some mutations. In this study, the molecular basis of the synergism between AGT-Mi and F152I mutation has been investigated through a detailed biochemical characterization of AGT-Mi and the Phe152 variants combined either with the major (F152I-Ma, F152A-Ma) or the minor allele (F152I-Mi). Although these species show spectral features, kinetic parameters, and PLP binding affinity similar to those of AGT-Ma, the Phe152 variants exhibit the following differences with respect to AGT-Ma and AGT-Mi: (i) pyridoxamine 5′-phosphate (PMP) is released during the overall transamination leading to the conversion into apoenzymes, and (ii) the PMP binding affinity is at least 200–1400-fold lower. Thus, Phe152 is not an essential residue for transaminase activity, but plays a role in selectively stabilizing the AGT-PMP complex, by a proper orientation of Trp108, as suggested by bioinformatic analysis. These data, together with the finding that apoF152I-Mi is the only species that at physiological temperature undergoes a time-dependent inactivation and concomitant aggregation, shed light on the molecular defects resulting from the association of the F152I mutation with AGT-Mi, and allow to speculate on the responsiveness to pyridoxine therapy of PH1 patients carrying this mutation.


Medical Hypotheses | 2013

Glycine consumption and mitochondrial serine hydroxymethyltransferase in cancer cells: The heme connection

Martino L. di Salvo; Roberto Contestabile; Alessandro Paiardini; Bruno Maras

It was recently discovered that glycine consumption is strongly related to the rate of proliferation across cancer cells. This is very intriguing and raises the question of what is the actual role of this amino acid in cancer metabolism. Cancer cells are greedy for glycine. In particular, the mitochondrial production of glycine seems to be utterly important. Overexpression of mitochondrial serine hydroxymethyltransferase, the enzyme converting l-serine to glycine, assures an adequate supply of glycine to rapidly proliferating cancer cells. In fact, silencing of mitochondrial serine hydroxymethyltransferase was shown to halt cancer cell proliferation. Direct incorporation of glycine carbon atoms into the purine ring has been proposed to be one main reason for the importance of glycine in cancer cell metabolism. We believe that, as far as the importance of glycine in cancer is concerned, a central role of this amino acid, namely its participation to heme biosynthesis, has been neglected. In mitochondria, glycine condenses with succinyl-CoA to form 5-aminolevulinate, the universal precursor of the different forms of heme contained in cytochromes and oxidative phosphorylation complexes. Our hypothesis is that mitochondrial serine hydroxymethyltransferase is fundamental to sustain cancer metabolism since production of glycine fuels heme biosynthesis and therefore oxidative phosphorylation. Respiration of cancer cells may then ultimately rely on endogenous glycine synthesis by mitochondrial serine hydroxymethyltransferase. The link between mitochondrial serine hydroxymethyltransferase activity and heme biosynthesis represents an important and still unexplored aspect of the whole picture of cancer cell metabolism. Our hypothesis might be tested using a combination of metabolic tracing and gene silencing on different cancer cell lines. The experiments should be devised so as to assess the importance of mitochondrial serine hydroxymethyltransferase and the glycine deriving from its reaction as a precursor of heme. If the observed increase of glycine consumption in rapidly proliferating cancer cells has its basis in the need for heme biosynthesis, then mitochondrial serine hydroxymethyltransferase should be considered as a key target for the development of new chemotherapeutic agents.


PLOS ONE | 2012

Identification by Virtual Screening and In Vitro Testing of Human DOPA Decarboxylase Inhibitors

Frederick Daidone; Riccardo Montioli; Alessandro Paiardini; Barbara Cellini; Antonio Macchiarulo; Giorgio Giardina; Francesco Bossa; Carla Borri Voltattorni

Dopa decarboxylase (DDC), a pyridoxal 5′-phosphate (PLP) enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinsons disease (PD). PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide) is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide) are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a) to use virtual screening to identify potential human DDC inhibitors and (b) to evaluate the reliability of our virtual-screening (VS) protocol by experimentally testing the “in vitro” activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with Ki values ≥10 µM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with Ki values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a Ki value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery.


Applied Microbiology and Biotechnology | 2013

The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool availability

Davide Antoniani; Elio Rossi; Serena Rinaldo; Paola Bocci; Marco Lolicato; Alessandro Paiardini; Nadia Raffaelli; Francesca Cutruzzolà; Paolo Landini

In Gram-negative bacteria, production of the signal molecule c-di-GMP by diguanylate cyclases (DGCs) is a key trigger for biofilm formation, which, in turn, is often required for the development of chronic bacterial infections. Thus, DGCs represent interesting targets for new chemotherapeutic drugs with anti-biofilm activity. We searched for inhibitors of the WspR protein, a Pseudomonas aeruginosa DGC involved in biofilm formation and production of virulence factors, using a set of microbiological assays developed in an Escherichia coli strain expressing the wspR gene. We found that azathioprine, an immunosuppressive drug used in the treatment of Crohn’s disease, was able to inhibit WspR-dependent c-di-GMP biosynthesis in bacterial cells. However, in vitro enzymatic assays ruled out direct inhibition of WspR DGC activity either by azathioprine or by its metabolic derivative 2-amino-6-mercapto-purine riboside. Azathioprine is an inhibitor of 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylase, an enzyme involved in purine biosynthesis, which suggests that inhibition of c-di-GMP biosynthesis by azathioprine may be due to perturbation of intracellular nucleotide pools. Consistent with this hypothesis, WspR activity is abolished in an E. coli purH mutant strain, unable to produce AICAR transformylase. Despite its effect on WspR, azathioprine failed to prevent biofilm formation by P. aeruginosa; however, it affected production of extracellular structures in E. coli clinical isolates, suggesting efficient inhibition of c-di-GMP biosynthesis in this bacterium. Our results indicate that azathioprine can prevent biofilm formation in E. coli through inhibition of c-di-GMP biosynthesis and suggest that such inhibition might contribute to its anti-inflammatory activity in Crohn’s disease.


Biochimica et Biophysica Acta | 2003

Threonine aldolase and alanine racemase: novel examples of convergent evolution in the superfamily of vitamin B6-dependent enzymes.

Alessandro Paiardini; Roberto Contestabile; Simona D'Aguanno; Stefano Pascarella; Francesco Bossa

Vitamin B(6)-dependent enzymes may be grouped into five evolutionarily unrelated families, each having a different fold. Within fold type I enzymes, L-threonine aldolase (L-TA) and fungal alanine racemase (AlaRac) belong to a subgroup of structurally and mechanistically closely related proteins, which specialised during evolution to perform different functions. In a previous study, a comparison of the catalytic properties and active site structures of these enzymes suggested that they have a catalytic apparatus with the same basic features. Recently, recombinant D-threonine aldolases (D-TAs) from two bacterial organisms have been characterised, their predicted amino acid sequences showing no significant similarities to any of the known B(6) enzymes. In the present work, a comparative structural analysis suggests that D-TA has an alpha/beta barrel fold and therefore is a fold type III B(6) enzyme, as eukaryotic ornithine decarboxylase (ODC) and bacterial AlaRac. The presence of both TA and AlaRac in two distinct evolutionary unrelated families represents a novel and interesting example of convergent evolution. The independent emergence of the same catalytic properties in families characterised by completely different folds may have not been determined by chance, but by the similar structural features required to catalyse pyridoxal phosphate-dependent aldolase and racemase reactions.


Journal of Medicinal Chemistry | 2013

Synthesis and Structure−Activity Relationships of Phosphonic Arginine Mimetics as Inhibitors of the M1 and M17 Aminopeptidases from Plasmodium falciparum

Komagal Kannan Sivaraman; Alessandro Paiardini; Marcin Sieńczyk; Chiara Ruggeri; Christine Oellig; John P. Dalton; Peter J. Scammells; Marcin Drag; Sheena McGowan

The malaria parasite Plasmodium falciparum employs two metallo-aminopeptidases, PfA-M1 and PfA-M17, which are essential for parasite survival. Compounds that inhibit the activity of either enzyme represent leads for the development of new antimalarial drugs. Here we report the synthesis and structure-activity relationships of a small library of phosphonic acid arginine mimetics that probe the S1 pocket of both enzymes and map the necessary interactions that would be important for a dual inhibitor.


Protein Science | 2008

Evolutionarily conserved regions and hydrophobic contacts at the superfamily level: The case of the fold-type I, pyridoxal-5′-phosphate-dependent enzymes

Alessandro Paiardini; Francesco Bossa; Stefano Pascarella

The wealth of biological information provided by structural and genomic projects opens new prospects of understanding life and evolution at the molecular level. In this work, it is shown how computational approaches can be exploited to pinpoint protein structural features that remain invariant upon long evolutionary periods in the fold‐type I, PLP‐dependent enzymes. A nonredundant set of 23 superposed crystallographic structures belonging to this superfamily was built. Members of this family typically display high‐structural conservation despite low‐sequence identity. For each structure, a multiple‐sequence alignment of orthologous sequences was obtained, and the 23 alignments were merged using the structural information to obtain a comprehensive multiple alignment of 921 sequences of fold‐type I enzymes. The structurally conserved regions (SCRs), the evolutionarily conserved residues, and the conserved hydrophobic contacts (CHCs) were extracted from this data set, using both sequence and structural information. The results of this study identified a structural pattern of hydrophobic contacts shared by all of the superfamily members of fold‐type I enzymes and involved in native interactions. This profile highlights the presence of a nucleus for this fold, in which residues participating in the most conserved native interactions exhibit preferential evolutionary conservation, that correlates significantly (r = 0.70) with the extent of mean hydrophobic contact value of their apolar fraction.

Collaboration


Dive into the Alessandro Paiardini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serena Rinaldo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Giorgio Giardina

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Pascarella

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Bossa

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessio Paone

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge