Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Patti is active.

Publication


Featured researches published by Alessandro Patti.


Journal of Physical Chemistry B | 2014

Molecular dynamics of spherical nanoparticles in dense polymer melts

Alessandro Patti

By performing molecular dynamics simulations, we investigate the structural and dynamical properties of polymer melts containing probe spherical nanoparticles. Generally speaking, the behavior of these polymer nanocomposites is strongly affected by the interaction strength established between the nanoparticles and the chain monomers and by the nanoparticle sizes. We highlight that this dependence is not always evident and some intriguing properties, such as the heterogeneous dynamics of both polymer chains and nanoparticles and their nonGaussian behavior at short and long timescales, are not particularly influenced by the degree of attraction between nanoparticles and polymer for the range of interactions we study (up to 6 kBT). We find the existence of weakly ordered interdigitated structures with sequential arrangements of particles and polymer chains, which separate each other and hence inhibit the formation of nanoparticle clusters. This is especially evident with big nanoparticles, being less prone to aggregate than small ones, even when their interaction with the polymer chain is as low as 0.5 kBT. Moreover, by integrating the stress-tensor autocorrelation functions, we estimate the shear viscosity and determine its dependence on the strength of the polymer-nanoparticle interactions and on the nanoparticle size. By acting as plasticizers, small nanoparticles decrease the viscosity, especially at low-to-moderate interactions with the polymer. By contrast, big nanoparticles that establish strongly attractive interactions with the polymer chains behave as thickening agents and significantly increase the viscosity. This complex and perhaps still scantily understood balance between the geometry of nanoparticles and their interaction with the polymer is key to predict and fully control the macroscopic response of nanocomposite materials and hence suitably tailor their mechanical properties.


Physical Review Letters | 2012

Frustration of the Isotropic-Columnar Phase Transition of Colloidal Hard Platelets by a Transient Cubatic Phase

Matthieu Marechal; Alessandro Patti; Matthew Dennison; Marjolein Dijkstra

Using simulations and theory, we show that the cubatic phase is metastable for three model hard platelets. The locally favored structures of perpendicular particle stacks in the fluid prevent the formation of the columnar phase through geometric frustration resulting in vitrification. Also, we find a direct link between structure and dynamic heterogeneities in the cooperative rotation of particle stacks, which is crucial for the devitrification process. Finally, we show that the lifetime of the glassy cubatic phase can be tuned by surprisingly small differences in particle shape.


Physical Review E | 2010

Non-Gaussian dynamics in smectic liquid crystals of parallel hard rods

Rik Matena; Marjolein Dijkstra; Alessandro Patti

Using computer simulations, we studied the diffusion and structural relaxation in equilibrium smectic liquid-crystal bulk phases of parallel hard spherocylinders. These systems exhibit a non-Gaussian layer-to-layer diffusion due to the presence of periodic barriers and transient cages and show remarkable similarities with the behavior of out-of-equilibrium supercooled liquids. We detect a very slow interlayer relaxation dynamics over the whole density range of the stable smectic phase which spans a time interval of four time decades. The intrinsic nature of the layered structure yields a hopping-type diffusion which becomes more heterogeneous for higher packing fractions. In contrast, the in-layer dynamics is typical of a dense fluid with a relatively fast decay. Our results on the dynamic behavior agree well with that observed in systems of freely rotating hard rods but differ quantitatively as the height of the periodic barriers reduces to zero at the nematic-smectic transition for aligned rods, while it remains finite for freely rotating rods.


Journal of Chemical Physics | 2010

Collective diffusion of colloidal hard rods in smectic liquid crystals: Effect of particle anisotropy.

Alessandro Patti; Djamel El Masri; René van Roij; Marjolein Dijkstra

We study the layer-to-layer diffusion in smectic-A liquid crystals of colloidal hard rods with different length-to-diameter ratios using computer simulations. The layered arrangement of the smectic phase yields a hopping-type diffusion due to the presence of permanent barriers and transient cages. Remarkably, we detect stringlike clusters composed of interlayer rods moving cooperatively along the nematic director. Furthermore, we find that the structural relaxation in equilibrium smectic phases shows interesting similarities with that of out-of-equilibrium supercooled liquids, although there the particles are kinetically trapped in transient rather than permanent cages. Additionally, at fixed packing fraction we find that the barrier height increases with increasing particle anisotropy, and hence the dynamics is more heterogeneous and non-Gaussian for longer rods, yielding a lower diffusion coefficient along the nematic director and smaller clusters of interlayer particles that move less cooperatively. At fixed barrier height, the dynamics becomes more non-Gaussian and heterogeneous for longer rods that move more collectively giving rise to a higher diffusion coefficient along the nematic director.


Journal of Chemical Physics | 2010

Heterogeneous dynamics in columnar liquid crystals of parallel hard rods

Simone Belli; Alessandro Patti; René van Roij; Marjolein Dijkstra

In the wake of previous studies on the rattling-and-jumping diffusion in smectic liquid crystal phases of colloidal rods, we analyze here for the first time the heterogeneous dynamics in columnar phases. More specifically, we perform computer simulations to investigate the relaxation dynamics of a binary mixture of perfectly aligned hard spherocylinders. We detect that the columnar arrangement of the system produces free-energy barriers that the particles should overcome to jump from one column to another, thus determining a hopping-type diffusion. This phenomenon accounts for the non-Gaussian intercolumn diffusion and shows a two-step structural relaxation that is remarkably analogous to that of out-of-equilibrium glass-forming systems and gels. Surprisingly enough, slight deviations from the behavior of simple liquids due to transient cages is also observed in the direction perpendicular to this plane, where the system is usually referred to as liquidlike.


Journal of Physical Chemistry B | 2012

Solvent-free model for self-assembling amphiphilic cyclodextrins. An off-lattice Monte Carlo approach in two dimensions.

Alessandro Patti; Roland Ramsch; Conxita Solans Marsà

By performing off-lattice Monte Carlo simulations in a two-dimensional space, we investigate the aggregation behavior of model Bouquet-shaped amphiphilic cyclodextrins. These molecules are able to self-assemble into a variety of supramolecular structures, such as micelles, vesicles, and long double-layered filaments. At high packing fractions, inverted micellar phases and lamellar liquid crystals have also been observed. Despite the number of approximations and restrictions imposed in our model, where the solution degrees of freedom are kept implicit and only the main physicochemical details are considered, we are able to reproduce the self-assembling behavior of amphiphilic cyclodextrins in its essential and most characteristic picture. The calculations of the cluster size distribution, density profiles, and radial distribution functions permit the characterization of the aggregates formed in the self-assembly process.


Molecular Simulation | 2018

Monte Carlo simulation of binary mixtures of hard colloidal cuboids

Alessandro Patti; Alejandro Cuetos

Abstract We perform extensive Monte Carlo simulations to investigate the phase behaviour of colloidal suspensions of hard board-like particles (HBPs). While theories restricting particle orientation or ignoring higher ordered phases suggest the existence of a stable biaxial nematic phase, our recent simulation results on monodisperse systems indicate that this is not necessarily the case, even for particle shapes exactly in between prolate and oblate geometries, usually referred to as self-dual shape. Motivated by the potentially striking impact of incorporating biaxial ordering into display applications, we extend our investigation to bidisperse mixtures of short and long HBPs and analyse whether size dispersity can further enrich the phase behaviour of HBPs, eventually destabilise positionally ordered phases and thus favour the formation of the biaxial nematic phase. Not only do our results indicate that bidisperse mixtures of self-dual shaped HBPs cannot self-assemble into biaxial nematic phases, but they also show that these particles are not able to form uniaxial nematic phases either. This surprising behaviour is also observed in monodisperse systems. Additionally, bidisperse HBPs tend to phase separate in coexisting isotropic and smectic phases or, at relatively large pressures, in a smectic phase of mostly short HBPs and a smectic phase of mostly long HBPs. We conclude that limiting the particle orientational degrees of freedom or neglecting the presence of positionally ordered (smectic, columnar and crystal) phases can dramatically alter the phase behaviour of HBPs and unrealistically enlarge the region of stability of the biaxial nematic phase.


Journal of Chemical Physics | 2016

Effective short-range Coulomb correction to model the aggregation behavior of ionic surfactants

José Javier Burgos-Mármol; Conxita Solans; Alessandro Patti

We present a short-range correction to the Coulomb potential to investigate the aggregation of amphiphilic molecules in aqueous solutions. The proposed modification allows to quantitatively reproduce the distribution of counterions above the critical micelle concentration (CMC) or, equivalently, the degree of ionization, α, of the micellar clusters. In particular, our theoretical framework has been applied to unveil the behavior of the cationic surfactant C24H49N2O2 (+) CH3SO4 (-), which offers a wide range of applications in the thriving and growing personal care market. A reliable and unambiguous estimation of α is essential to correctly understand many crucial features of the micellar solutions, such as their viscoelastic behavior and transport properties, in order to provide sound formulations for the above mentioned personal care solutions. We have validated our theory by performing extensive lattice Monte Carlo simulations, which show an excellent agreement with experimental observations. More specifically, our coarse-grained model is able to reproduce and predict the complex morphology of the micelles observed at equilibrium. Additionally, our simulation results disclose the existence of a transition from a monodisperse to a bidisperse size distribution of aggregates, unveiling the intriguing existence of a second CMC.


Physical Chemistry Chemical Physics | 2018

Dynamic Monte Carlo algorithm for out-of-equilibrium processes in colloidal dispersions

Daniel Corbett; Alejandro Cuetos; Matthew Dennison; Alessandro Patti

Colloids have a striking relevance in a wide spectrum of industrial formulations, spanning from personal care products to protective paints. Their behaviour can be easily influenced by extremely weak forces, which disturb their thermodynamic equilibrium and dramatically determine their performance. Motivated by the impact of colloidal dispersions in fundamental science and formulation engineering, we have designed an efficient Dynamic Monte Carlo (DMC) approach to mimic their out-of-equilibrium dynamics. Our recent theory, which provided a rigorous method to reproduce the Brownian motion of colloids by MC simulations, is here generalised to reproduce the Brownian motion of colloidal particles during transitory unsteady states, when their thermodynamic equilibrium is significantly modified. To this end, we investigate monodisperse and bidisperse rod-like particles in the isotropic phase and apply an external field that forces their reorientation along a common direction and induces an isotropic-to-nematic phase transition. We also study the behaviour of the system once the external field is removed. Our simulations are in excellent quantitative agreement with Brownian Dynamics simulations when the DMC results are rescaled with a time-dependent acceptance ratio, which depends on the strength of the applied field.


Physical Review E | 2012

Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: a comparative study.

Alessandro Patti; Alejandro Cuetos

Collaboration


Dive into the Alessandro Patti's collaboration.

Top Co-Authors

Avatar

Alejandro Cuetos

Pablo de Olavide University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Corbett

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nima Shokri

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge