Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Petraglia is active.

Publication


Featured researches published by Alessandro Petraglia.


Journal of Experimental Botany | 2014

The capability to synthesize phytochelatins and the presence of constitutive and functional phytochelatin synthases are ancestral (plesiomorphic) characters for basal land plants

Alessandro Petraglia; Maria De Benedictis; Francesca Degola; Giovanni Pastore; Margherita Calcagno; Roberta Ruotolo; Alessio Mengoni; Luigi Sanità di Toppi

Bryophytes, a paraphyletic group which includes liverworts, mosses, and hornworts, have been stated as land plants that under metal stress (particularly cadmium) do not synthesize metal-binding peptides such as phytochelatins. Moreover, very little information is available to date regarding phytochelatin synthesis in charophytes, postulated to be the direct ancestors of land plants, or in lycophytes, namely very basal tracheophytes. In this study, it was hypothesized that basal land plants and charophytes have the capability to produce phytochelatins and possess constitutive and functional phytochelatin synthases. To verify this hypothesis, twelve bryophyte species (six liverworts, four mosses, and two hornworts), three charophytes, and two lycophyte species were exposed to 0-36 μM cadmium for 72 h, and then assayed for: (i) glutathione and phytochelatin quali-quantitative content by HPLC and mass spectrometry; (ii) the presence of putative phytochelatin synthases by western blotting; and (iii) in vitro activity of phytochelatin synthases. Of all the species tested, ten produced phytochelatins in vivo, while the other seven did not. The presence of a constitutively expressed and functional phytochelatin synthase was demonstrated in all the bryophyte lineages and in the lycophyte Selaginella denticulata, but not in the charophytes. Hence, current knowledge according to phytochelatins have been stated as being absent in bryophytes was therefore confuted by this work. It is argued that the capability to synthesize phytochelatins, as well as the presence of active phytochelatin synthases, are ancestral (plesiomorphic) characters for basal land plants.


Annals of Botany | 2014

Environmentally induced transgenerational changes in seed longevity: maternal and genetic influence

Andrea Mondoni; Simone Orsenigo; M. Donà; Alma Balestrazzi; Robin J. Probert; Fiona R. Hay; Alessandro Petraglia; Thomas Abeli

BACKGROUND AND AIMS Seed longevity, a fundamental plant trait for ex situ conservation and persistence in the soil of many species, varies across populations and generations that experience different climates. This study investigates the extent to which differences in seed longevity are due to genetic differences and/or modified by adaptive responses to environmental changes. METHODS Seeds of two wild populations of Silene vulgaris from alpine (wA) and lowland (wL) locations and seeds originating from their cultivation in a lowland common garden for two generations (cA1, cL1, cA2 and cL2) were exposed to controlled ageing at 45 °C, 60 % relative humidity and regularly sampled for germination and relative mRNA quantification (SvHSP17.4 and SvNRPD12). KEY RESULTS The parental plant growth environment affected the longevity of seeds with high plasticity. Seeds of wL were significantly longer lived than those of wA. However, when alpine plants were grown in the common garden, longevity doubled for the first generation of seeds produced (cA1). Conversely, longevity was similar in all lowland seed lots and did not increase in the second generation of seeds produced from alpine plants grown in the common garden (cA2). Analysis of parental effects on mRNA seed provisioning indicated that the accumulation of gene transcripts involved in tolerance to heat stress was highest in wL, cL1 and cL2, followed by cA1, cA2 and wA. CONCLUSIONS Seed longevity has a genetic basis, but may show strong adaptive responses, which are associated with differential accumulation of mRNA via parental effects. Adaptive adjustments of seed longevity due to transgenerational plasticity may play a fundamental role in the survival and persistence of the species in the face of future environmental challenges. The results suggest that regeneration location may have important implications for the conservation of alpine plants held in seed banks.


Plant and Soil | 2014

Warming effects and plant trait control on the early-decomposition in alpine snowbeds

Michele Carbognani; Alessandro Petraglia; Marcello Tomaselli

Background and aimsIn cold biomes, litter decomposition, which controls the nutrient availability for plants and the ecosystem carbon budget, is strongly influenced by climatic conditions. In this study, focused on the early litter decay within snowbed habitats, the magnitude of the short- and long-term influences of climate warming, the direction of the effects of warmer temperature and advanced snowmelt, and the control of microclimatic features and plant traits were compared.MethodsCombining experimental warming and space-for-time substitution, mass loss and nutrient release of different plant functional types were estimated in different climatic treatments with the litter bag method.ResultsPlant functional types produced a larger variation in the early-decomposition compared to that produced by climatic treatments. Litter decay was not affected by warmer summer temperatures and reduced by advanced snowmelt. Structural-related plant traits exerted the major control over litter decomposition.ConclusionsLong-term effects of climate warming, resulting from shifts in litter quality due to changes in the abundance of plant functional types, will likely have a stronger impact on plant litter decomposition than short-term variations in microclimatic features. This weaker response of litter decay to short-term climate changes may be partially due to the opposite influences of higher summer temperatures and advanced snowmelt time.


Alpine Botany | 2014

Current vegetation changes in an alpine late snowbed community in the south-eastern Alps (N-Italy)

Michele Carbognani; Marcello Tomaselli; Alessandro Petraglia

During the last decades, a significant warming was observed in the Alps, cascading into a decrease in snowfall and snow-cover duration. Within the alpine landscape, snowbed communities are regarded as especially vulnerable to the predicted warmer temperatures and earlier snowmelt time. Albeit snowbeds represent a prominent component of the tundra biome, the current vegetation dynamics of these habitats are not yet well understood. In this study, the changes of vascular species richness, co-occurrence, composition, and abundance were evaluated within a late snowbed in the south-eastern Alps. The study was based on a re-survey of 11 permanent plots after a 6-year period. Species richness and abundance significantly increased and species co-occurrence shifted toward higher species segregation. Moreover, the changes in species richness at different spatial scales were related to different environmental factors, and a change in the proportion between snowbed and non-snowbed plants was found. The results suggest an increasing importance of competitive interaction among species in determining the future structure and composition of this community. In conclusion, there is strong evidence that this snowbed community is not in equilibrium with the current climate, and that changes in floristic composition and functional processes of this habitat are underway.


Plant Ecology & Diversity | 2013

Effects of nutrient amendments on modular growth, flowering effort and reproduction of snowbed plants

Alessandro Petraglia; Michele Carbognani; Marcello Tomaselli

Background: There have been few studies on the effects on alpine flora and vegetation of an increase in nutrient availability. Two main potential sources of increased nutrient availability in alpine ecosystems are enhanced mineralisation caused by climate warming and atmospheric nitrogen deposition. Little is known on how life history traits of different species are related at individual and community levels to enhanced nutrient availability. Aims: We investigated the effects of nitrogen and phosphorus addition on the modular growth, flowering and germination of four species: two snowbed specialists and two alpine generalists. Methods: We established in a late snowbed at the Gavia Pass, Italian Alps, a factorial experiment with four fertiliser treatments (N, P, Low N+P, and High N+P) and an unfertilised control. Nutrients were applied in 2003–2006 and we recorded the number of modules per individuals, total number of flowers, number of flowers per flowering module, and calculated the percentage of flowering modules in 2005 and 2006, and counted the number of seedlings in 2006. Results: The modular growth and flowering effort of the species appeared to be co-limited by N and P. The alpine generalists showed greater responses to fertilization in vegetative growth and flowering compared with snowbed specialists. The number of seedlings recorded indicated species-specific responses to nutrient addition. Conclusions: Our results suggest that enhanced nutrient availability stimulates modular growth and flowering effort in responsive alpine generalist species. This, in turn, could lead to an increase in their abundance, leading to changes in community structure in snowbeds with enhanced nutrient availability.


Oecologia | 2016

Micro-climatic controls and warming effects on flowering time in alpine snowbeds

Michele Carbognani; Giulietta Bernareggi; Francesco Perucco; Marcello Tomaselli; Alessandro Petraglia

Alpine snowbed communities are among the habitats most threatened by climate change. The warmer temperature predicted, coupled with advanced snowmelt time, will influence flowering phenology, which is a key process in species adaptation to changing environmental conditions and plant population dynamics. However, we know little about the effects of changing micro-climate on flowering time in snowbeds and the mechanisms underlying such phenological responses. The flowering phenology of species inhabiting alpine snowbeds was assessed with weekly observations over five growing seasons. We analysed flowering time in relation to micro-climatic variation in snowmelt date, soil and air temperature, and experimental warming during the snow-free period. This approach allowed us to test hypotheses concerning the processes driving flowering phenology. The plants were finely tuned with inter-annual and intra-seasonal variations of their micro-climate, but species did not track the same micro-climatic feature to flower. At the growing-season time-scale, the air surrounding the plants was the most common trigger of the blooming period. However, at the annual time-scale, the snowmelt date was the main controlling factor for flowering time, even in warmer climate. Moreover, spatial patterns of the snowmelt influenced the developmental rate of the species because in later snowmelt sites the plants needed a lower level of heat accumulation to enter anthesis. Phenological responses to experimental warming differed among species, were proportional to the pre-flowering time-span of plants, and did not show consistent trends of change over time. Finally, warmer temperature produced an overall increase of flowering synchrony both within and among plant species.


Plant Physiology and Biochemistry | 2018

The phytochelatin synthase from Nitella mucronata (Charophyta) plays a role in the homeostatic control of iron(II)/(III).

Debora Fontanini; Andrea Andreucci; Monica Ruffini Castiglione; Adriana Basile; Sergio Sorbo; Alessandro Petraglia; Francesca Degola; Erika Bellini; Laura Bruno; Claudio Varotto; Luigi Sanità di Toppi

Although some charophytes (sister group to land plants) have been shown to synthesize phytochelatins (PCs) in response to cadmium (Cd), the functional characterization of their phytochelatin synthase (PCS) is still completely lacking. To investigate the metal response and the presence of PCS in charophytes, we focused on the species Nitella mucronata. A 40 kDa immunoreactive PCS band was revealed in mono-dimensional western blot by using a polyclonal antibody against Arabidopsis thaliana PCS1. In two-dimensional western blot, the putative PCS showed various spots with acidic isoelectric points, presumably originated by post-translational modifications. Given the PCS constitutive expression in N. mucronata, we tested its possible involvement in the homeostasis of metallic micronutrients, using physiological concentrations of iron (Fe) and zinc (Zn), and verified its role in the detoxification of a non-essential metal, such as Cd. Neither in vivo nor in vitro exposure to Zn resulted in PCS activation and PC significant biosynthesis, while Fe(II)/(III) and Cd were able to activate the PCS in vitro, as well as to induce PC accumulation in vivo. While Cd toxicity was evident from electron microscopy observations, the normal morphology of cells and organelles following Fe treatments was preserved. The overall results support a function of PCS and PCs in managing Fe homeostasis in the carophyte N. mucronata.


SIL Proceedings, 1922-2010 | 2009

Springs like islands: implications on richness and species density

Daniel Spitale; Alessandro Petraglia

Many hypotheses exist concerning specific factors that control plant species richness, but currently there is no consensus about the mechanisms underlying these relationships (GRIME 2001 ). As far as we know, works especially dedicated to investigate the diversity in spring habitats are completely lacking. Few works exist on spring vegetation, and those are from a phytosociological point of view (e.g., ZECHMEISTER & MuciNA 1994). Spring habitats have severa( characteristics which make them worth to be studied and may provide interesting contributions to individuate the relative importance of different factors controlling diversity. Springs are generally distinguishable from the surrounding habitats because water is continuously present throughout the year, has minimal temperature tluctuations over the years (CANTO-


European Journal of Soil Biology | 2002

Soil quality indicators and biodiversity in northern Italian permanent grasslands

Ciro Gardi; Marcello Tomaselli; Vittorio Parisi; Alessandro Petraglia; Claudio Santini


Global Change Biology | 2007

Nitrogen deposition interacts with climate in affecting production and decomposition rates in Sphagnum mosses

Renato Gerdol; Alessandro Petraglia; Luca Bragazza; Paola Iacumin; Lisa Brancaleoni

Collaboration


Dive into the Alessandro Petraglia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriana Basile

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge