Alessandro Quintino
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alessandro Quintino.
Journal of Heat Transfer-transactions of The Asme | 2012
Massimo Corcione; Marta Cianfrini; Alessandro Quintino
The pumping power diminution consequent to the use of nanoparticle suspensions as heat transfer fluids is analyzed theoretically assuming that nanofluids behave like single-phase fluids. In this hypothesis, all the heat transfer and friction factor correlations originally developed for single-phase flows can be used also for nanoparticle suspensions, provided that the thermophysical properties appearing in them are the nanofluid effective properties calculated at the reference temperature. In this regard, two empirical equations, based on a wide variety of experimental data reported in the literature, are used for the evaluation of the nanofluid effective thermal conductivity and dynamic viscosity. Conversely, the other effective properties are computed by the traditional mixing theory. Both laminar and turbulent flow regimes are investigated, using the operating conditions, the nanoparticle diameter, and the solid–liquid combination as control parameters. The fundamental result obtained is the existence of an optimal particle loading for minimum cost of operation at constant heat transfer rate. A set of empirical dimensional algebraic equations is proposed to determine the optimal particle loading of water-based nanofluids.
Numerical Heat Transfer Part A-applications | 2016
Massimo Corcione; Marta Cianfrini; Alessandro Quintino
ABSTRACT A two-phase model based on the double-diffusive approach is used to perform a numerical study of natural convection in differentially heated vertical cavities filled with water-based nanofluids, assuming that Brownian diffusion and thermophoresis are the only slip mechanisms by which the solid phase can develop a significant relative velocity with respect to the liquid phase. The system of the governing equations of continuity, momentum, and energy for the nanofluid, and continuity for the nanoparticles, is solved through a computational code, which incorporates three empirical correlations for the evaluation of the effective thermal conductivity, the effective dynamic viscosity, and the thermophoretic diffusion coefficient, all based on the literature experimental data. The pressure–velocity coupling is handled using the SIMPLE-C algorithm. Numerical simulations are executed for three different nanofluids, using the diameter and the average volume fraction of the suspended nanoparticles, as well as the cavity width, the average temperature of the nanofluid, and the temperature difference imposed across the cavity, as independent variables. It is found that the heat transfer performance of the nanofluid relative to that of the base fluid increases notably with increasing the average temperature, showing a peak at an optimal particle loading. Conversely, the other controlling parameters have moderate effects.
Numerical Heat Transfer Part A-applications | 2017
Alessandro Quintino; Elisa Ricci; Massimo Corcione
ABSTRACT A two-phase model based on the double-diffusive approach is used to perform a numerical study on the natural convection of water-based nanofluids in differentially heated square cavities, inclined with respect to gravity so that the heated wall is positioned below the cooled wall, assuming that Brownian diffusion and thermophoresis are the only slip mechanisms by which the solid phase can develop a significant relative velocity with respect to the liquid phase. The system of the governing equations of continuity, momentum, and energy for the nanofluid, and continuity for the nanoparticles, is solved through a computational code that incorporates three empirical correlations for the evaluation of the effective thermal conductivity, the effective dynamic viscosity, and the thermophoretic diffusion coefficient, all based on several sets of literature experimental data. Pressure–velocity coupling is handled by the way of the SIMPLE-C algorithm. Numerical simulations are executed for tilting angles in the range 50−70 deg, such that the nonuniform distribution of the suspended solid phase gives rise to a nonnegligible solutal buoyancy force, whose effects are investigated using the nanoparticle diameter and average volume fraction, the cavity width, the nanofluid average temperature, and the temperature difference imposed across the cavity, as independent variables. It is found that the competition between the solutal and thermal buoyancy forces results in an oscillatory flow, with an oscillation amplitude that increases on increasing the cavity size and the imposed temperature difference. Moreover, the impact of the nanoparticle dispersion into the base liquid is found to be higher at higher average temperatures, whereas, by contrast, the other variables have moderate or negligible effects.
Heat Transfer Engineering | 2016
Massimo Corcione; Alessandro Quintino
The experimental studies dealing with natural convection of nanofluids in differentially heated enclosures demonstrate that the addition of nanoparticles to a pure base liquid is substantially detrimental, which can be ascribed to the formation of two stagnant fluid layers near the top and bottom adiabatic walls. Thus, if the horizontal walls are differentially heated instead of being perfectly insulated, the consequent development of a pair of concentration boundary layers near them may possibly imply a heat transfer enhancement. In this connection, a two-phase mixture model is employed to perform a numerical study of laminar natural convection in a square cavity containing water suspensions of alumina nanoparticles with a diameter of 33 nm and an average volume fraction in the range 0.001–0.04, assuming that Brownian diffusion and thermophoresis are the primary slip mechanisms between solid and liquid phases. The cavity is differentially heated at sides, whereas the horizontal walls are assumed to be either adiabatic or one heated and the other cooled, with a Rayleigh number in the range 4 × 105–3 × 106. It is found that the heating-from-below configuration is featured by periodic heat transfer, with a rate remarkably higher than that typical of the pure base liquid.
BioMed Research International | 2014
Franco Marinozzi; Fabiano Bini; Alessandro Quintino; Massimo Corcione; Andrea Marinozzi
We firstly measured the swelling of single trabeculae from human femur heads during water imbibition. Since the swelling is caused by water diffusing from external surfaces to the core of the sample, by measuring the sample swelling over time, we obtained direct information about the transport of fluids through the intimate constituents of bone, where the mineralization process takes place. We developed an apparatus to measure the free expansion of the tissue during the imbibition. In particular, we measured the swelling along three natural axes (length L, width W, and thickness T) of plate-like trabeculae. For this aim, we developed a 3D analytical model of the water uptake by the sample that was performed according to Fickian transport mechanism. The results were then utilized to predict the swelling over time along the three sample directions (L, W, T) and the apparent diffusion coefficients D T, D W, and D L.
5th Biot Conference on Poromechanics, BIOT 2013 | 2013
Franco Marinozzi; Fabiano Bini; Andrea Marinozzi; Annalisa De Paolis; Emanuele Habib; Alessandro Quintino; Massimo Corcione
In this paper we firstly illustrate the measurement of the swelling of a single trabecula from human femur heads during water imbibition. Moreover, since the swelling is caused by water diffusing from external surfaces to the core of the sample, by measuring the sample swelling over time, we obtained direct information about the transport of fluids through the intimate constituents of bone, where the mineralization process takes place. We developed an apparatus to measure the free expansion of the tissue during the imbibition. In particular, we measured the swelling along three natural axis (length L, width W and thickness T) of the trabecula. To this aim, a 3D analytical model of the water uptake by the sample was performed according to Fickian transport mechanism. The results have been utilized to fit the measured swelling along the three sample directions (L, W, T) and the apparent diffusion coefficients DT,DW and DL.
Heat Transfer Engineering | 2018
Alessandro Quintino; Elisa Ricci; Stefano Grignaffini; Massimo Corcione
ABSTRACT Natural convection in water-filled square cavities inclined with respect to gravity, having one wall cooled at 0°C and the opposite wall heated at a temperature ranging between 4°C and 30°C, is studied numerically for cavity widths spanning from 0.02 m to 0.1 m in the hypothesis of temperature-dependent physical properties, with the main aim to determine the optimal tilting angle for maximum heat transfer. A computational code based on the SIMPLE-C algorithm is used to solve the system of the mass, momentum and energy transfer governing equations. Once the vertical configuration, in which the cavity is differentially heated at sides, is identified by the zero tilting angle, and positive angles denote configurations with the heated wall facing upwards, it is found that the optimal tilting angle is positive if the heating temperature is equal or higher than 8°C, whereas it is negative whenever the heating temperature is lower than 8°C. Moreover, the optimal tilting angle is found to increase as the cavity width is decreased and the temperature of the heated wall is either decreased or increased, according as it is higher or lower than 8°C. Sets of dimensionless correlating equations are developed for the prediction of both the optimal tilting angle and the heat transfer rate across the enclosure.
Heat Transfer Engineering | 2018
Massimo Corcione; Stefano Grignaffini; Alessandro Quintino; Elisa Ricci; Andrea Vallati
ABSTRACT A two-phase model based on the double-diffusive approach is used to perform a numerical study of natural convection of alumina-water nanofluids in differentially heated vertical slender cavities. In the mathematical formulation, Brownian diffusion and thermophoresis are assumed to be the only slip mechanisms by which the solid phase can develop a significant relative velocity with respect to the liquid phase. The system of the governing equations of continuity, momentum and energy for the nanofluid, and continuity for the nanoparticles is solved through a computational code relying on the SIMPLE-C algorithm for the pressure-velocity coupling. The effective thermal conductivity and dynamic viscosity of the nanofluid, and the coefficient of thermophoretic diffusion of the suspended solid phase, are evaluated using three empirical correlations based on a high number of experimental data available from diverse sources, and validated by way of literature data different from those used in generating them. Numerical simulations are executed for different height-to-width aspect ratios of the enclosure, as well as different average temperatures of the nanofluid. The heat transfer performance of the nanoparticle suspension relative to that of the base fluid is found to increase as the nanofluid average temperature is increased and, at low to moderate temperatures, the aspect ratio of the enclosure is decreased. Moreover, at temperatures higher than room temperature, a peak at an optimal particle loading is found to exist for any investigated configuration.
Progress in Computational Fluid Dynamics | 2017
Paweł Ocłoń; Andrea Vallati; Elisa Ricci; Alessandro Quintino; Massimo Corcione
A two-phase model based on the double-diffusive approach is used to perform a numerical study on natural convection of water-based nanofluids in square cavities partially heated at the bottom wall and cooled at both sides, assuming that Brownian diffusion and thermophoresis are the only slip mechanisms by which the solid phase can develop a significant relative velocity with respect to the liquid phase. Numerical simulations are basically executed for Al2O3 + H2O, using the diameter and the average volume fraction of the suspended nanoparticles, the cavity width, the heated fraction of the bottom wall, the average temperature and the temperature difference imposed across the cavity, as independent variables. Additional simulations are also performed using CuO or TiO2 nanoparticles. It is found that the cooperation between the solutal and thermal buoyancy forces results in a significant enhancement of the heat transfer performance of the nanofluid compared with the pure base liquid.
Heat Transfer Engineering | 2017
Marta Cianfrini; Massimo Corcione; Alessandro Quintino; Elisa Ricci
ABSTRACT A demonstrative numerical study on natural convection of water-based nanofluids in square enclosures with different boundary conditions imposed at the walls, and different orientations with respect to the gravity vector, is performed using both the single-phase and the two-phase approaches, with the main scope to evaluate in what measure the single-phase approach fails in describing the basic heat and fluid flow features, as well as in determining the thermal performance of nanofluids. The system of the mass, momentum and energy transfer governing equations is solved by way of a computational code based on the SIMPLE-C algorithm. Empirical correlations are used for the calculation of the effective thermal conductivity, the effective dynamic viscosity, and the thermophoretic diffusion coefficient. The following configurations are investigated: a tilted cavity differentially-heated at two opposite walls; a vertical cavity partially-heated at the bottom wall and cooled at both sides; and a vertical cavity differentially-heated at the vertical and horizontal walls. It is found that the non-uniform distribution of the suspended solid phase throughout the enclosure gives rise to a solutal buoyancy force, whose competition with the thermal buoyancy force results in a periodic flow detectable only if the two-phase approach is applied. Moreover, the impact of the dispersion of the nanoparticles into the base liquid, which turns out to be notably higher at higher average temperatures, is found to be systematically underestimated by the single-phase approach.