Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Tessitore is active.

Publication


Featured researches published by Alessandro Tessitore.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine.

Venkata S. Mattay; Terry E. Goldberg; Francesco Fera; Ahmad R. Hariri; Alessandro Tessitore; Michael F. Egan; Bhaskar Kolachana; Joseph H. Callicott; Daniel R. Weinberger

Monamines subserve many critical roles in the brain, and monoaminergic drugs such as amphetamine have a long history in the treatment of neuropsychiatric disorders and also as a substance of abuse. The clinical effects of amphetamine are quite variable, from positive effects on mood and cognition in some individuals, to negative responses in others, perhaps related to individual variations in monaminergic function and monoamine system genes. We explored the effect of a functional polymorphism (val158-met) in the catechol O-methyltransferase gene, which has been shown to modulate prefrontal dopamine in animals and prefrontal cortical function in humans, on the modulatory actions of amphetamine on the prefrontal cortex. Amphetamine enhanced the efficiency of prefrontal cortex function assayed with functional MRI during a working memory task in subjects with the high enzyme activity val/val genotype, who presumably have relatively less prefrontal synaptic dopamine, at all levels of task difficulty. In contrast, in subjects with the low activity met/met genotype who tend to have superior baseline prefrontal function, the drug had no effect on cortical efficiency at low-to-moderate working memory load and caused deterioration at high working memory load. These data illustrate an application of functional neuroimaging in pharmacogenomics and extend basic evidence of an inverted-“U” functional-response curve to increasing dopamine signaling in the prefrontal cortex. Further, individuals with the met/met catechol O-methyltransferase genotype appear to be at increased risk for an adverse response to amphetamine.


Biological Psychiatry | 2003

Neocortical modulation of the amygdala response to fearful stimuli.

Ahmad R. Hariri; Venkata S. Mattay; Alessandro Tessitore; Francesco Fera; Daniel R. Weinberger

BACKGROUND The cortical circuitry involved in conscious cognitive processes and the subcortical circuitry involved in fear responses have been extensively studied with neuroimaging, but their interactions remain largely unexplored. A recent functional magnetic resonance imaging (fMRI) study demonstrated that the engagement of the right prefrontal cortex during the cognitive evaluation of angry and fearful facial expressions is associated with an attenuation of the response of the amygdala to these same stimuli, providing evidence for a functional neural network for emotional regulation. METHODS In the current study, we have explored the generalizability of this functional network by using threatening and fearful non-face stimuli derived from the International Affective Picture System (IAPS), as well as the influence of this network on peripheral autonomic responses. RESULTS Similar to the earlier findings with facial expressions, blood oxygen level dependent fMRI revealed that whereas perceptual processing of IAPS stimuli was associated with a bilateral amygdala response, cognitive evaluation of these same stimuli was associated with attenuation of this amygdala response and a correlated increase in response of the right prefrontal cortex and the anterior cingulate cortex. Moreover, this pattern was reflected in changes in skin conductance. CONCLUSIONS The current results further implicate the importance of neocortical regions, including the prefrontal and anterior cingulate cortices, in regulating emotional responses mediated by the amygdala through conscious evaluation and appraisal.


NeuroImage | 2002

The Amygdala Response to Emotional Stimuli: A Comparison of Faces and Scenes

Ahmad R. Hariri; Alessandro Tessitore; Venkata S. Mattay; Francesco Fera; Daniel R. Weinberger

As a central fear processor of the brain, the amygdala initiates a cascade of critical physiological and behavioral responses. Neuroimaging studies have shown that the human amygdala responds not only to fearful and angry facial expressions but also to fearful and threatening scenes such as attacks, explosions, and mutilations. Given the relative importance of facial expressions in adaptive social behavior, we hypothesized that the human amygdala would exhibit a stronger response to angry and fearful facial expressions in comparison to other fearful and threatening stimuli. Twelve subjects completed two tasks while undergoing fMRI: matching angry or fearful facial expressions, and matching scenes depicting fearful or threatening situations derived from the International Affective Picture System (IAPS). While there was an amygdala response to both facial expressions and IAPS stimuli, direct comparison revealed that the amygdala response to facial expressions was significantly greater than that to IAPS stimuli. Autonomic reactivity, measured by skin conductance responses, was also greater to facial expressions. These results suggest that the human amygdala shows a stronger response to affective facial expressions than to scenes, a bias that should be considered in the design of experimental paradigms interested in probing amygdala function.


Neurology | 2002

Neurophysiological correlates of age-related changes in human motor function

Venkata S. Mattay; Francesco Fera; Alessandro Tessitore; Ahmad R. Hariri; Sumitra Das; Joseph H. Callicott; Daniel R. Weinberger

BackgroundThere are well-defined and characteristic age-related deficits in motor abilities that may reflect structural and chemical changes in the aging brain. ObjectiveTo delineate age-related changes in the physiology of brain systems subserving simple motor behavior. MethodsTen strongly right-handed young (<35 years of age) and 12 strongly right-handed elderly (>50 years of age) subjects with no evidence of cognitive or motor deficits participated in the study. Whole-brain functional imaging was performed on a 1.5-T MRI scanner using a spiral pulse sequence while the subjects performed a visually paced “button-press” motor task with their dominant right hand alternating with a rest state. ResultsAlthough the groups did not differ in accuracy, there was an increase in reaction time in the elderly subjects (mean score ± SD, young subjects = 547 ± 97 ms, elderly subjects = 794 ± 280 ms, p < 0.03). There was a greater extent of activation in the contralateral sensorimotor cortex, lateral premotor area, supplementary motor area, and ipsilateral cerebellum in the elderly subjects relative to the young subjects (p < 0.001). Additional areas of activation, absent in the young subjects, were seen in the ipsilateral sensorimotor cortex, putamen (left > right), and contralateral cerebellum of the elderly subjects. ConclusionsThe results of this study show that elderly subjects recruit additional cortical and subcortical areas even for the performance of a simple motor task. These changes may represent compensatory mechanisms invoked by the aging brain, such as reorganization and redistribution of functional networks to compensate for age-related structural and neurochemical changes.


Annals of Neurology | 2002

Dopaminergic modulation of cortical function in patients with Parkinson's disease.

Venkata S. Mattay; Alessandro Tessitore; Joseph H. Callicott; Alessandro Bertolino; Terry E. Goldberg; Thomas N. Chase; Thomas M. Hyde; Daniel R. Weinberger

Patients with idiopathic Parkinsons disease suffer not only from classic motor symptoms, but from deficits in cognitive function, primarily those subserved by the prefrontal cortex as well. The aim of the current study was to investigate the modulatory effects of dopaminergic therapy on neural systems subserving working memory and motor function in patients with Parkinsons disease. Ten patients with stage I and II Parkinsons disease were studied with functional magnetic resonance imaging, during a relatively hypodopaminergic state (ie, 12 hours after a last dose of dopamimetic treatment), and again during a dopamine‐replete state. Functional magnetic resonance imaging was performed under three conditions: a working memory task, a cued sensorimotor task and rest. Consistent with prior data, the cortical motor regions activated during the motor task showed greater activation during the dopamine‐replete state; however, the cortical regions subserving working memory displayed greater activation during the hypodopaminergic state. Interestingly, the increase in cortical activation during the working memory task in the hypodopaminergic state positively correlated with errors in task performance, and the increased activation in the cortical motor regions during the dopamine‐replete state was positively correlated with improvement in motor function. These results support evidence from basic research that dopamine modulates cortical networks subserving working memory and motor function via two distinct mechanisms: nigrostriatal projections facilitate motor function indirectly via thalamic projections to motor cortices, whereas the mesocortical dopaminergic system facilitates working memory function via direct inputs to prefrontal cortex. The results are also consistent with evidence that the hypodopaminergic state is associated with decreased efficiency of prefrontal cortical information processing and that dopaminergic therapy improves the physiological efficiency of this region.


The Journal of Neuroscience | 2002

Dopamine Modulates the Response of the Human Amygdala: A Study in Parkinson's Disease

Alessandro Tessitore; Ahmad R. Hariri; Francesco Fera; William G. Smith; Thomas N. Chase; Thomas M. Hyde; Daniel R. Weinberger; Venkata S. Mattay

In addition to classic motor signs and symptoms, Parkinsons disease (PD) is characterized by neuropsychological and emotional deficits, including a blunted emotional response. In the present study, we explored both the neural basis of abnormal emotional behavior in PD and the physiological effects of dopaminergic therapy on the response of the amygdala, a central structure in emotion processing. PD patients and matched normal controls (NCs) were studied with blood oxygenation level-dependent functional magnetic resonance imaging during a paradigm that involved perceptual processing of fearful stimuli. PD patients were studied twice, once during a relatively hypodopaminergic state (i.e., ≥12 hr after their last dose of dopamimetic treatment) and again during a dopamine-replete state. The imaging data revealed a robust bilateral amygdala response in NCs that was absent in PD patients during the hypodopaminergic state. Dopamine repletion partially restored this response in PD patients. Our results demonstrate an abnormal amygdala response in PD that may underlie the emotional deficits accompanying the disease. Furthermore, consistent with findings in experimental animal paradigms, our results providein vivo evidence of the role of dopamine in modulating the response of the amygdala to sensory information in human subjects.


Neuropsychopharmacology | 2002

Dextroamphetamine Modulates the Response of the Human Amygdala

Ahmad R. Hariri; Venkata S. Mattay; Alessandro Tessitore; Francesco Fera; William G. Smith; Daniel R. Weinberger

Amphetamine, a potent monoaminergic agonist, has pronounced effects on emotional behavior in humans, including the generation of fear and anxiety. Recent animal studies have demonstrated the importance of monoamines, especially dopamine, in modulating the response of the amygdala, a key brain region involved in the perception of fearful and threatening stimuli, and the generation of appropriate physiological and behavioral responses. We have explored the possibility that the anxiogenic effect of amphetamine in humans reflects the drugs influence on the activity of the amygdala. In a double-blind placebo controlled study, fMRI revealed that dextroamphetamine potentiated the response of the amygdala during the perceptual processing of angry and fearful facial expressions. Our results provide the first evidence of a specific neural substrate for the anxiogenic effects of amphetamine and are consistent with animal models of dopaminergic activation of the amygdala.


Neurology | 2012

Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease.

Alessandro Tessitore; Fabrizio Esposito; Carmine Vitale; Gabriella Santangelo; Marianna Amboni; Antonio Russo; Daniele Corbo; Giovanni Cirillo; Paolo Barone; Gioacchino Tedeschi

ABSTRACT Objective: Using resting-state (RS) fMRI, we investigated the functional integrity of the default-mode network (DMN) in cognitively unimpaired patients with Parkinson disease (PD). Methods: RS fMRI at 3 T was collected in 16 cognitively unimpaired patients with PD and 16 age- and gender-matched healthy controls. Single-subject and group-level independent component analysis was used to investigate differences in functional connectivity within the DMN in patients with PD and healthy controls. Statistical analysis was performed using BrainVoyager QX. In addition, we used voxel-based morphometry to test whether between-group differences in RS functional connectivity were related to structural abnormalities. Results: Patients with PD compared with controls showed a decreased functional connectivity of the right medial temporal lobe and bilateral inferior parietal cortex within the DMN. Although patients with PD were cognitively unimpaired, the decreased DMN connectivity significantly correlated with cognitive parameters but not with disease duration, motor impairment, or levodopa therapy. The analysis of regional volume differences did not reveal any differences in local gray matter between patients and controls. Conclusions: Our findings revealed a functional disruption of the DMN in cognitively unimpaired patients with PD, in the absence of significant structural differences between patients and controls. We hypothesize that a dysfunction of the DMN connectivity may have a role in the development of cognitive decline in PD.


Psychiatry Research-neuroimaging | 2005

Functional changes in the activity of brain regions underlying emotion processing in the elderly

Alessandro Tessitore; Ahmad R. Hariri; Francesco Fera; William G. Smith; Saumitra Das; Daniel R. Weinberger; Venkata S. Mattay

Aging is associated with a decline in both cognitive and motor abilities that reflects deterioration of underlying brain circuitry. While age-related alterations have also been described in brain regions underlying emotional behavior (e.g., the amygdala), the functional consequence of such changes is less clear. To this end, we used blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) to explore age-related changes in brain regions underlying emotion processing. Twelve young (age <30 years) and 14 elderly subjects (age >60 years) were studied with BOLD fMRI during a paradigm that involved perceptual processing of fearful and threatening stimuli. Consistent with previous reports, direct group comparisons revealed relatively increased BOLD fMRI responses in prefrontal cortical regions, including Brocas area, and relatively decreased responses in the amygdala and posterior fusiform gyri in elderly subjects. Importantly, additional analyses using an elderly-specific brain template for spatial normalization of the elderly BOLD fMRI data confirmed these divergent regional response patterns. While there was no difference between groups in accuracy on the task, elderly subjects were significantly slower (delayed reaction times) in performing the task. Our current data suggest that elderly subjects engage a more distributed neocortical network during the perceptual processing of emotional facial expressions. In light of recent converging data from two other studies, our observed effects may reflect age-related compensatory responses and/or alternative strategies in processing emotions, as the elderly appear to engage cognitive/linguistic systems in the context of reduced sensory and/or limbic responses.


The Journal of Neuroscience | 2005

Neural Mechanisms Underlying Probabilistic Category Learning in Normal Aging

Francesco Fera; Thomas W. Weickert; Terry E. Goldberg; Alessandro Tessitore; Ahmad R. Hariri; Sumitra Das; Sam Lee; Brad Zoltick; Martijn Meeter; Catherine E. Myers; Mark A. Gluck; Daniel R. Weinberger; Venkata S. Mattay

Probabilistic category learning engages neural circuitry that includes the prefrontal cortex and caudate nucleus, two regions that show prominent changes with normal aging. However, the specific contributions of these brain regions are uncertain, and the effects of normal aging have not been examined previously in probabilistic category learning. In the present study, using a blood oxygenation level-dependent functional magnetic resonance imaging block design, 18 healthy young adults (mean age, 25.5 ± 2.6 years) and 15 older adults (mean age, 67.1 ± 5.3 years) were assessed on the probabilistic category learning “weather prediction” test. Whole-brain functional images acquired using a 1.5T scanner (General Electric, Milwaukee, WI) with gradient echo, echo planar imaging (3/1 mm; repetition time, 3000 ms; echo time, 50 ms) were analyzed using second-level random-effects procedures [SPM99 (Statistical Parametric Mapping)]. Young and older adults displayed equivalent probabilistic category learning curves, used similar strategies, and activated analogous neural networks, including the prefrontal and parietal cortices and the caudate nucleus. However, the extent of caudate and prefrontal activation was less and parietal activation was greater in older participants. The percentage correct and reaction time were mainly positively correlated with caudate and prefrontal activation in young individuals but positively correlated with prefrontal and parietal cortices in older individuals. Differential activation within a circumscribed neural network in the context of equivalent learning suggests that some brain regions, such as the parietal cortices, may provide a compensatory mechanism for healthy older adults in the context of deficient prefrontal cortex and caudate nuclei responses.

Collaboration


Dive into the Alessandro Tessitore's collaboration.

Top Co-Authors

Avatar

Gioacchino Tedeschi

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Antonio Russo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Francesco Fera

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcello Silvestro

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Rosa De Micco

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Joseph H. Callicott

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Saumitra Das

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge