Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessia Fabbri is active.

Publication


Featured researches published by Alessia Fabbri.


Infection and Immunity | 2000

Enterotoxicity and Cytotoxicity of Vibrio parahaemolyticus Thermostable Direct Hemolysin in In Vitro Systems

Francesco Raimondi; Joseph P. Y. Kao; Carla Fiorentini; Alessia Fabbri; Gianfranco Donelli; Nicoletta Gasparini; Armido Rubino; Alessio Fasano

ABSTRACT Vibrio parahaemolyticus is a marine bacterium known to be a common cause of seafood gastroenteritis worldwide. The thermostable direct hemolysin (TDH) has been proposed to be a major virulence factor of V. parahaemolyticus. TDH causes intestinal fluid secretion as well as cytotoxicity in a variety of cell types. In this study, we investigated the interplay between the hemolysins enterotoxic and cytotoxic effects by using both human and rat cell monolayers. As revealed by microspectrofluorimetry, the toxin causes a dose-dependent increase in intracellular free calcium in both Caco-2 and IEC-6 cells. This effect was reversible only when low toxin concentrations were tested. The TDH-activated ion influx pathway is not selective for calcium but admits ions such sodium and manganese as well. Furthermore, in the same range of concentration, the hemolysin triggers a calcium-dependent chloride secretion. At high concentrations, TDH induces a dose-dependent but calcium-independent cell death as assessed by functional, biochemical, and morphological assays.


PLOS Pathogens | 2009

Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells.

Amanda Oldani; Mireille Cormont; Véronique Hofman; Valentina Chiozzi; Olivier Oregioni; Alexandra Canonici; Anna Sciullo; Patrizia Sommi; Alessia Fabbri; Vittorio Ricci; Patrice Boquet

Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+ H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Enhancement of learning and memory after activation of cerebral Rho GTPases.

Giovanni Diana; Giovanni Valentini; Sara Travaglione; Loredana Falzano; Massimo Pieri; Cristina Zona; Stefania Meschini; Alessia Fabbri; Carla Fiorentini

The mechanism whereby the morphology and connectivity of the dendritic tree is regulated depends on an actin dynamics that, in turn, is controlled by Rho GTPases, a family of small GTP-binding proteins encompassing Rho, Rac, and Cdc42 subfamilies. Cytotoxic necrotizing factor 1 (CNF1), a protein toxin from Escherichia coli, constitutively activates Rho GTPases, thus leading to remodeling of the actin cytoskeleton in intact cells. Here, we show that the modulation of cerebral RhoA and Rac1 activity induced by CNF1 in mice leads to (i) rearrangement of cerebral actin cytoskeleton, (ii) enhanced neurotransmission and synaptic plasticity, and (iii) improved learning and memory in various behavioral tasks. The effects persist for weeks and are not observed in mice treated with a recombinant CNF1, in which the enzymatic activity was abolished by substituting serine to cysteine at position 866. The results suggest that learning ability can be improved through pharmacological manipulation of neural connectivity.


Journal of Biological Chemistry | 1997

Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1), a Toxin That Activates the Rho GTPase

Carla Fiorentini; Alessia Fabbri; Gilles Flatau; Gianfranco Donelli; Paola Matarrese; Emmanuel Lemichez; Loredana Falzano; Patrice Boquet

Cytotoxic necrotizing factor 1 (CNF1), a 110-kDa protein toxin from pathogenic Escherichia coli induces actin reorganization into stress fibers and retraction fibers in human epithelial cultured cells allowing them to spread. CNF1 is acting in the cytosol since microinjection of the toxin into HEp-2 cells mimics the effects of the externally applied CNF1. Incubation in vitro of CNF1 with recombinant small GTPases induces a modification of Rho (but not of Rac, Cdc42, Ras, or Rab6) as demonstrated by a discrete increase in the apparent molecular weight of the molecule. Preincubation of cells with CNF1 impairs the cytotoxic effects of Clostridium difficile toxin B, which inactivates Rho but not those of Clostridium sordellii LT toxin, which inhibits Ras and Rac. As shown for Rho-GTP, CNF1 activates, in a time- and dose-dependent manner, a cytoskeleton-associated phosphatidylinositol 4-phosphate 5-kinase. However, neither the phosphatidylinositol 4,5-bisphosphate (PIP2) nor the phosphatidylinositol 3,4-bisphosphate (PI 3,4-P2) or 3,4,5-trisphosphate (PIP3) cellular content were found increased in CNF1 treated HEp-2 cells. Cellular effects of CNF1 were not blocked by LY294002, a stable inhibitor of the phosphoinositide 3-kinase. Incubation of HEp-2 cells with CNF1 induces relocalization of myosin 2 in stress fibers but not in retraction fibers. Altogether, our data indicate that CNF1 is a toxin that selectively activates the Rho GTP-binding protein, thus inducing contractility and cell spreading.


Critical Reviews in Microbiology | 2011

Human intestinal microbiota: cross-talk with the host and its potential role in colorectal cancer.

Marco Candela; Marco Guidotti; Alessia Fabbri; Patrizia Brigidi; Claudio Franceschi; Carla Fiorentini

In this review, we discuss the multifactorial role of intestinal microbiota in colorectal cancer. The peculiar metabolism of dietary compounds of the individual microbiota complement, its overall immunostimulation and immunomodulatory activity, and eventually the production of toxins that perturb the regulation of cell growth, define the balance of positive and negative risk factors for colorectal cancer development. Moreover, shaping the composition of the human intestinal microbiota, diet has an indirect impact in determining the balance between health and disease. The integration of diet, microbial, and host factors in a system approach is mandatory to determine the overall balance of risk and protective factors for colorectal cancer onset.


Journal of Biological Chemistry | 2007

Clostridium difficile Toxin B Causes Apoptosis in Epithelial Cells by Thrilling Mitochondria INVOLVEMENT OF ATP-SENSITIVE MITOCHONDRIAL POTASSIUM CHANNELS

Paola Matarrese; Loredana Falzano; Alessia Fabbri; Lucrezia Gambardella; Claudio Frank; Blandine Geny; Michel R. Popoff; Walter Malorni; Carla Fiorentini

Targeting to mitochondria is emerging as a common strategy that bacteria utilize to interact with these central executioners of apoptosis. Several lines of evidence have in fact indicated mitochondria as specific targets for bacterial protein toxins, regarded as the principal virulence factors of pathogenic bacteria. This work shows, for the first time, the ability of the Clostridium difficile toxin B (TcdB), a glucosyltransferase that inhibits the Rho GTPases, to impact mitochondria. In living cells, TcdB provokes an early hyperpolarization of mitochondria that follows a calcium-associated signaling pathway and precedes the final execution step of apoptosis (i.e. mitochondria depolarization). Importantly, in isolated mitochondria, the toxin can induce a calcium-dependent mitochondrial swelling, accompanied by the release of the proapoptogenic factor cytochrome c. This is consistent with a mitochondrial targeting that does not require the Rho-inhibiting activity of the toxin. Of interest, the mitochondrial ATP-sensitive potassium channels are also involved in the apoptotic response to TcdB and appear to be crucial for the cell death execution phase, as demonstrated by using specific modulators of these channels. To our knowledge, the involvement of these mitochondrial channels in the ability of a bacterial toxin to control cell fate is a hitherto unreported finding.


Neuropsychopharmacology | 2012

Modulation of RhoGTPases Improves the Behavioral Phenotype and Reverses Astrocytic Deficits in a Mouse Model of Rett Syndrome

Bianca De Filippis; Alessia Fabbri; Daiana Simone; Rossella Canese; Laura Ricceri; Fiorella Malchiodi-Albedi; Giovanni Laviola; Carla Fiorentini

RhoGTPases are crucial molecules in neuronal plasticity and cognition, as confirmed by their role in non-syndromic mental retardation. Activation of brain RhoGTPases by the bacterial cytotoxic necrotizing factor 1 (CNF1) reshapes the actin cytoskeleton and enhances neurotransmission and synaptic plasticity in mouse brains. We evaluated the effects of a single CNF1 intracerebroventricular inoculation in a mouse model of Rett syndrome (RTT), a rare neurodevelopmental disorder and a genetic cause of mental retardation, for which no effective therapy is available. Fully symptomatic MeCP2-308 male mice were evaluated in a battery of tests specifically tailored to detect RTT-related impairments. At the end of behavioral testing, brain sections were immunohistochemically characterized. Magnetic resonance imaging and spectroscopy (MRS) were also applied to assess morphological and metabolic brain changes. The CNF1 administration markedly improved the behavioral phenotype of MeCP2-308 mice. CNF1 also dramatically reversed the evident signs of atrophy in astrocytes of mutant mice and restored wt-like levels of this cell population. A partial rescue of the overexpression of IL-6 cytokine was also observed in RTT brains. CNF1-induced brain metabolic changes detected by MRS analysis involved markers of glial integrity and bioenergetics, and point to improved mitochondria functionality in CNF1-treated mice. These results clearly indicate that modulation of brain RhoGTPases by CNF1 may constitute a totally innovative therapeutic approach for RTT and, possibly, for other disorders associated with mental retardation.


Cell Death & Differentiation | 2003

Hijacking Rho GTPases by protein toxins and apoptosis: molecular strategies of pathogenic bacteria

Carla Fiorentini; Loredana Falzano; Sara Travaglione; Alessia Fabbri

AbstractCertain bacterial toxins and type-III-translocated virulence factors have a peculiar property: they exert part of their actions by modulating Rho GTPases. These toxins target the actin cytoskeleton of host cells and reorganize it to their own advantage, either to facilitate macropinocytosis, which is required for invasive bacteria to enter cells, or to block pathogen sequestration by macrophages. In addition, by acting on Rho GTPases, bacteria may also interfere with the fate of host cells, favoring survival or death depending on their needs. Rho GTPases control the activation of NF-κB, which is involved in the expression of antiapoptotic proteins and mediates immunological responses as well. Here, we give a perspective on how NF-κB may participate in linking Rho-acting toxins and apoptosis.


The Journal of Neuroscience | 2011

Activation of Rho GTPases Triggers Structural Remodeling and Functional Plasticity in the Adult Rat Visual Cortex

Chiara Cerri; Alessia Fabbri; Eleonora Vannini; Maria Spolidoro; Mario Costa; Lamberto Maffei; Carla Fiorentini; Matteo Caleo

A classical example of age-dependent plasticity is ocular dominance (OD) plasticity, triggered by monocular deprivation (MD). Sensitivity of cortical circuits to a brief period of MD is maximal in juvenile animals and downregulated in adult age. It remains unclear whether a reduced potential for morphological remodeling underlies this downregulation of physiological plasticity in adulthood. Here we have tested whether stimulation of structural rearrangements is effective in promoting experience-dependent plasticity in adult age. We have exploited a bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1), that regulates actin dynamics and structure of neuronal processes via a persistent activation of Rho GTPases. Injection of CNF1 into the adult rat visual cortex triggered a long-lasting activation of the Rho GTPase Rac1, with a consequent increase in spine density and length in pyramidal neurons. Adult rats treated with CNF1, but not controls, showed an OD shift toward the open eye after MD. CNF1-mediated OD plasticity was selectively attributable to the enhancement of open-eye responses, whereas closed-eye inputs were unaffected. This effect correlated with an increased density of geniculocortical terminals in layer IV of monocularly deprived, CNF1-treated rats. Thus, Rho GTPase activation reinstates OD plasticity in the adult cortex via the potentiation of more active inputs from the open eye. These data establish a direct link between structural remodeling and functional plasticity and demonstrate a role for Rho GTPases in brain plasticity in vivo. The plasticizing effects of Rho GTPase activation may be exploited to promote brain repair.


Cell Death & Differentiation | 2005

Cytotoxic necrotizing factor 1 hinders skeletal muscle differentiation in vitro by perturbing the activation/deactivation balance of Rho GTPases.

Sara Travaglione; Graziella Messina; Alessia Fabbri; Loredana Falzano; Anna Maria Giammarioli; Milena Grossi; Stefano Rufini; Carla Fiorentini

The current knowledge assigns a crucial role to the Rho GTPases family (Rho, Rac, Cdc42) in the complex transductive pathway leading to skeletal muscle cell differentiation. Their exact function in myogenesis, however, remains largely undefined. The protein toxin CNF1 was herein employed as a tool to activate Rho, Rac and Cdc42 in the myogenic cell line C2C12. We demonstrated that CNF1 impaired myogenesis by affecting the muscle regulatory factors MyoD and myogenin and the structural protein MHC expressions. This was principally driven by Rac/Cdc42 activation whereas Rho apparently controlled only the fusion process. More importantly, we proved that a controlled balance between Rho and Rac/Cdc42 activation/deactivation state was crucial for the correct execution of the differentiation program, thus providing a novel view for the role of Rho GTPases in muscle cell differentiation. Also, the use of Rho hijacking toxins can represent a new strategy to pharmacologically influence the differentiative process.

Collaboration


Dive into the Alessia Fabbri's collaboration.

Top Co-Authors

Avatar

Carla Fiorentini

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Loredana Falzano

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Sara Travaglione

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Paola Matarrese

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Walter Malorni

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Gianfranco Donelli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Elisabetta Straface

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Stefano Loizzo

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge