Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessia Mercalli is active.

Publication


Featured researches published by Alessia Mercalli.


Transplantation | 2003

Rapamycin impairs antigen uptake of human dendritic cells

Paolo Monti; Alessia Mercalli; Biagio Eugenio Leone; Di Carlo Valerio; Paola Allavena; Lorenzo Piemonti

Background. Rapamycin is a recently introduced immunosuppressive agent. Its effect on lymphocytes has been extensively studied. Whether it can also modulate dendritic cell (DC) function is unknown. Methods. The effect of rapamycin on differentiation, antigen uptake, and the immunostimulatory capacity of human DC was examined. DC were derived from monocytes upon culture with interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor in the presence or absence of rapamycin (0.1–100 ng/mL). Surface phenotype and antigen uptake capacity of DC were assessed by flow cytometry. Immunostimulatory capacity was measured by mixed lymphocyte culture. Results. Rapamycin reduced DC recovery and increased DC apoptosis. DC differentiated in the presence of rapamycin (rapa-DC) had increased expression of CD1a, CD1b, and CD1c and decreased expression of MHC I, MHC II, CD80, CD86, and CD40. Antigen uptake receptor expression (mannose receptor, CD32, CD91, CD46) was decreased, and receptor-mediated endocytosis of fluorescein isothiocyanate-dextran was markedly impaired in rapa-DC, as were fluid phase endocytosis of Lucipher Yellow and phagocytic activity of bacteria and dead or apoptotic cells. CD40 ligand-induced production of both IL-12 and IL-10 was reduced in rapa-DC, and allogeneic T lymphocyte responses were moderately impaired when rapa-DC were used as stimulator cells. Neither cyclosporine nor FK506 affected DC function. However, the effects of rapamycin on DC could be completely inhibited by a 10-fold excess of FK506 but not by up to 100-fold excess of cyclosporine. Conclusion. Rapamycin has a unique and profound inhibitory effect on DC function, which seems to be at least in part mediated by the FKBP immunophilins.


Journal of Immunology | 2004

Tumor-Derived MUC1 Mucins Interact with Differentiating Monocytes and Induce IL-10highIL-12low Regulatory Dendritic Cell

Paolo Monti; Biagio Eugenio Leone; Alessandro Zerbi; Gianpaolo Balzano; Silvia Cainarca; Valeria Sordi; Marina Pontillo; Alessia Mercalli; Valerio Di Carlo; Paola Allavena; Lorenzo Piemonti

Dendritic cells (DC) initiate immunity by the activation of naive T cells and control immunity through their ability to induce unresponsiveness of lymphocytes by mechanisms that include deletion and induction of regulatory cells. An inadequate presentation to T cells by tumor-induced “regulatory” DC, among several mechanisms, can explain tolerance to tumor-associated Ags. In this study, we show that tumor-derived mucin profoundly affects the cytokine repertoire of monocyte-derived DC and switch them into IL-10highIL-12low regulatory APCs with a limited capacity to trigger protective Th1 responses. In fact, DC cocultured with pancreatic tumor cell lines in a Transwell system did not reach full maturation, had low immunostimulatory functions, did not produce IL-12, and released high levels of IL-10. The involvement of known tumor-derived immune-suppressive factors (e.g., vascular endothelial growth factor, TGF-β, IL-6, and IL-10) was considered and excluded. We provide evidence that tumor-derived MUC1 mucins are responsible for the impaired DC maturation and function. DC obtained in the presence of tumor microenvironment preferentially polarized IL-4+ response. Moreover, T cells primed by these regulatory DC became anergic and behaved as suppressor/regulatory cells. These findings identify mucin secretion as a novel mechanism of tumor escape from immune surveillance and provide the basis for the generation of potentially tolerogenic DC.


Journal of Clinical Investigation | 2012

CXCR1/2 inhibition enhances pancreatic islet survival after transplantation

Antonio Citro; Elisa Cantarelli; Paola Maffi; Rita Nano; Raffaella Melzi; Alessia Mercalli; Erica Dugnani; Valeria Sordi; Paola Magistretti; Luisa Daffonchio; Pier Adelchi Ruffini; Marcello Allegretti; Antonio Secchi; Ezio Bonifacio; Lorenzo Piemonti

Although long considered a promising treatment option for type 1 diabetes, pancreatic islet cell transformation has been hindered by immune system rejection of engrafted tissue. The identification of pathways that regulate post-transplant detrimental inflammatory events would improve management and outcome of transplanted patients. Here, we found that CXCR1/2 chemokine receptors and their ligands are crucial negative determinants for islet survival after transplantation. Pancreatic islets released abundant CXCR1/2 ligands (CXCL1 and CXCL8). Accordingly, intrahepatic CXCL1 and circulating CXCL1 and CXCL8 were strongly induced shortly after islet infusion. Genetic and pharmacological blockade of the CXCL1-CXCR1/2 axis in mice improved intrahepatic islet engraftment and reduced intrahepatic recruitment of polymorphonuclear leukocytes and NKT cells after islet infusion. In humans, the CXCR1/2 allosteric inhibitor reparixin improved outcome in a phase 2 randomized, open-label pilot study with a single infusion of allogeneic islets. These findings indicate that the CXCR1/2-mediated pathway is a regulator of islet damage and should be a target for intervention to improve the efficacy of transplantation.


Immunology | 2013

Rapamycin unbalances the polarization of human macrophages to M1

Alessia Mercalli; Ines Calavita; Erica Dugnani; Antonio Citro; Elisa Cantarelli; Rita Nano; Raffaella Melzi; Paola Maffi; Antonio Secchi; Valeria Sordi; Lorenzo Piemonti

Plasticity is a hallmark of macrophages, and in response to environmental signals these cells undergo different forms of polarized activation, the extremes of which are called classic (M1) and alternative (M2). Rapamycin (RAPA) is crucial for survival and functions of myeloid phagocytes, but its effects on macrophage polarization are not yet studied. To address this issue, human macrophages obtained from six normal blood donors were polarized to M1 or M2 in vitro by lipopolysaccharide plus interferon‐γ or interleukin‐4 (IL‐4), respectively. The presence of RAPA (10 ng/ml) induced macrophage apoptosis in M2 but not in M1. Beyond the impact on survival in M2, RAPA reduced CXCR4, CD206 and CD209 expression and stem cell growth factor‐β, CCL18 and CCL13 release. In contrast, in M1 RAPA increased CD86 and CCR7 expression and IL‐6, tumour necrosis factor‐α and IL‐1β release but reduced CD206 and CD209 expression and IL‐10, vascular endothelial growth factor and CCL18 release. In view of the in vitro data, we examined the in vivo effect of RAPA monotherapy (0·1 mg/kg/day) in 12 patients who were treated for at least 1 month before islet transplant. Cytokine release by Toll‐like receptor 4‐stimulated peripheral blood mononuclear cells showed a clear shift to an M1‐like profile. Moreover, macrophage polarization 21 days after treatment showed a significant quantitative shift to M1. These results suggest a role of mammalian target of rapamycin (mTOR) into the molecular mechanisms of macrophage polarization and propose new therapeutic strategies for human M2‐related diseases through mTOR inhibitor treatment.


Stem Cells | 2009

Mesenchymal Cells Appearing in Pancreatic Tissue Culture Are Bone Marrow‐Derived Stem Cells With the Capacity to Improve Transplanted Islet Function

Valeria Sordi; Raffaella Melzi; Alessia Mercalli; Roberta Formicola; Claudio Doglioni; Francesca Tiboni; Giuliana Ferrari; Rita Nano; Karolina Chwalek; Eckhard Lammert; Enzio Bonifacio; Danielle J. Borg; Lorenzo Piemonti

Adherent fibroblast‐like cells have been reported to appear in cultures of human endocrine or exocrine pancreatic tissue during attempts to differentiate human β cells from pancreatic precursors. A thorough characterization of these mesenchymal cells has not yet been completed, and there are no conclusive data about their origin.


Transplantation | 2006

Differential effects of immunosuppressive drugs on chemokine receptor CCR7 in human monocyte-derived dendritic cells: selective upregulation by rapamycin.

Sordi; Bianchi G; Buracchi C; Alessia Mercalli; Marchesi F; Giovanna D'Amico; Yang Ch; Luini W; Annunciata Vecchi; Alberto Mantovani; Paola Allavena; Lorenzo Piemonti

Background. Appropriate recruitment of dendritic cells (DC) at sites of inflammation and migration to secondary lymphoid organs is of critical importance for the initiation of Ag-specific immune responses. The proper localization of DC in selected tissues is guided primarily by the coordinated expression of chemokine receptors (CKR). Here we show that immunosuppressive drugs have divergent effects on the modulation of CKR in maturing DC. Methods and Results. Dexamethazone (DEX) and IL-10 inhibited human DC migration to CCL19 in vitro and mouse DC migration to lymph nodes (LN) in vivo, by impairing CCR7 expression. The calcineurin inhibitors cyclosporine A (CsA) and tacrolimus (FK506) were characterized by the inability to modulate CKR expression and migratory activity. Rapamycin (RAPA) increased DC migration to CCL19 in vitro and to LN in vivo by enhancing CCR7 expression. This effect could be mediated, in LPS-maturing DC, by the inhibition of autocrine IL-10 production. The in vivo data obtained with ex vivo RAPA treated DC were confirmed in a model of in vivo drug administration in mice, suggesting a potential clinical relevance. Conclusions. These findings demonstrate that immunosuppressive agents differently modulate the CKR switch associated with maturing DC; in particular, RAPA selectively up-regulates CCR7 and enhances the migration of differentiated DC to regional LN. This study contributes to a better understanding of the role of immunosuppressive therapy on DC migration, a potentially relevant check point of immunosuppressive treatment.


Diabetes Care | 2009

Association between plasma monocyte chemoattractant protein-1 concentration and cardiovascular disease mortality in middle-aged diabetic and nondiabetic individuals.

Lorenzo Piemonti; Giliola Calori; Guido Lattuada; Alessia Mercalli; Francesca Ragogna; Maria Paola Garancini; Giacomo Ruotolo; Livio Luzi; Gianluca Perseghin

OBJECTIVE Monocyte chemoattractant protein-1 (MCP-1/CCL2) is a chemokine involved into the pathogenesis of atherosclerosis and has prognostic value in the acute and chronic phases in patients with acute coronary syndromes. RESEARCH DESIGN AND METHODS MCP-1/CCL2 concentration was measured in plasma fractions of 363 middle-aged overweight/obese individuals (aged 61 ± 12 years, BMI 30.1 ± 6.6 kg/m2, 15% with type 2 diabetes, and 12% with impaired glucose tolerance) of a population survey carried out in 1990–1991 in Lombardy, Italy (Cremona Study), and cardiovascular disease (CVD) mortality was assessed in 2006 through Regional Health Registry files. RESULTS At baseline MCP-1/CCL2 was increased in individuals with type 2 diabetes (P < 0.05) and showed significant correlations with biochemical risk markers of atherosclerosis. After 15 years, among the 363 subjects, there were 82 deaths due to CVD. In univariate analysis age, sex, fasting glucose and insulin, fibrinogen, glucose tolerance status, smoking habit, and MCP-1/CCL2 were associated with CVD mortality. Age, sex, fasting serum glucose, MCP-1/CCL2, and smoking habit maintained an independent association with CVD mortality in multiple regression analysis. In a subgroup of 113 subjects in whom data for C-reactive protein (CRP) were available, its level was not predictive of CVD mortality. CONCLUSIONS In middle-aged overweight/obese individuals MCP-1/CCL2 was independently associated with CVD mortality. Further studies will be necessary to establish its role as a surrogate biomarker and as a potential therapeutic target.


Diabetes | 2013

Alloantibody and Autoantibody Monitoring Predicts Islet Transplantation Outcome in Human Type 1 Diabetes

Lorenzo Piemonti; Matthew J. Everly; Paola Maffi; Marina Scavini; Francesca Poli; Rita Nano; Massimo Cardillo; Raffaella Melzi; Alessia Mercalli; Valeria Sordi; Vito Lampasona; Alejandro Espadas de Arias; Mario Scalamogna; Emanuele Bosi; Ezio Bonifacio; Antonio Secchi; Paul I. Terasaki

Long-term clinical outcome of islet transplantation is hampered by the rejection and recurrence of autoimmunity. Accurate monitoring may allow for early detection and treatment of these potentially compromising immune events. Islet transplant outcome was analyzed in 59 consecutive pancreatic islet recipients in whom baseline and de novo posttransplant autoantibodies (GAD antibody, insulinoma-associated protein 2 antigen, zinc transporter type 8 antigen) and donor-specific alloantibodies (DSA) were quantified. Thirty-nine recipients (66%) showed DSA or autoantibody increases (de novo expression or titer increase) after islet transplantation. Recipients who had a posttransplant antibody increase showed similar initial performance but significantly lower graft survival than patients without an increase (islet autoantibodies P < 0.001, DSA P < 0.001). Posttransplant DSA or autoantibody increases were associated with HLA-DR mismatches (P = 0.008), induction with antithymocyte globulin (P = 0.0001), and pretransplant panel reactive alloantibody >15% in either class I or class II (P = 0.024) as independent risk factors and with rapamycin as protective (P = 0.006) against antibody increases. DSA or autoantibody increases after islet transplantation are important prognostic markers, and their identification could potentially lead to improved islet cell transplant outcomes.


Diabetes | 2013

Autologous Pancreatic Islet Transplantation in Human Bone Marrow

Paola Maffi; Gianpaolo Balzano; Maurilio Ponzoni; Rita Nano; Valeria Sordi; Raffaella Melzi; Alessia Mercalli; Marina Scavini; Antonio Esposito; Jacopo Peccatori; Elisa Cantarelli; Carlo Messina; Massimo Bernardi; Alessandro Del Maschio; Carlo Staudacher; Claudio Doglioni; Fabio Ciceri; Antonio Secchi; Lorenzo Piemonti

The liver is the current site of choice for pancreatic islet transplantation, even though it is far from being ideal. We recently have shown in mice that the bone marrow (BM) may be a valid alternative to the liver, and here we report a pilot study to test feasibility and safety of BM as a site for islet transplantation in humans. Four patients who developed diabetes after total pancreatectomy were candidates for the autologous transplantation of pancreatic islet. Because the patients had contraindications for intraportal infusion, islets were infused in the BM. In all recipients, islets engrafted successfully as shown by measurable posttransplantation C-peptide levels and histopathological evidence of insulin-producing cells or molecular markers of endocrine tissue in BM biopsy samples analyzed during follow-up. Thus far, we have recorded no adverse events related to the infusion procedure or the presence of islets in the BM. Islet function was sustained for the maximum follow-up of 944 days. The encouraging results of this pilot study provide new perspectives in identifying alternative sites for islet infusion in patients with type 1 diabetes. Moreover, this is the first unequivocal example of successful engraftment of endocrine tissue in the BM in humans.


Blood | 2009

Bone marrow as an alternative site for islet transplantation

Elisa Cantarelli; Raffaella Melzi; Alessia Mercalli; Valeria Sordi; Giuliana Ferrari; Carsten W. Lederer; Emanuela Mrak; Alessandro Rubinacci; Maurilio Ponzoni; Giovanni Sitia; Luca G. Guidotti; Ezio Bonifacio; Lorenzo Piemonti

The liver is the current site for pancreatic islet transplantation, but has many drawbacks due to immunologic and nonimmunologic factors. We asked whether pancreatic islets could be engrafted in the bone marrow (BM), an easily accessible and widely distributed transplant site that may lack the limitations seen in the liver. Syngeneic islets engrafted efficiently in the BM of C57BL/6 mice rendered diabetic by streptozocin treatment. For more than 1 year after transplantation, these animals showed parameters of glucose metabolism that were similar to those of nondiabetic mice. Islets in BM had a higher probability to reach euglycemia than islets in liver (2.4-fold increase, P = .02), showed a compact morphology with a conserved ratio between alpha and beta cells, and affected bone structure only very marginally. Islets in BM did not compromise hematopoietic activity, even when it was strongly induced in response to a BM aplasia-inducing infection with lymphocytic choriomeningitis virus. In conclusion, BM is an attractive and safe alternative site for pancreatic islet transplantation. The results of our study open a research line with potentially significant clinical impact, not only for the treatment of diabetes, but also for other diseases amenable to treatment with cellular transplantation.

Collaboration


Dive into the Alessia Mercalli's collaboration.

Top Co-Authors

Avatar

Lorenzo Piemonti

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Valeria Sordi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Rita Nano

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Paola Maffi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Marina Scavini

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Antonio Secchi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Ezio Bonifacio

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Claudio Doglioni

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Elisa Cantarelli

Vita-Salute San Raffaele University

View shared research outputs
Researchain Logo
Decentralizing Knowledge