Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessia Para is active.

Publication


Featured researches published by Alessia Para.


Science | 2009

A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock

Jose L. Pruneda-Paz; Ghislain Breton; Alessia Para; Steve A. Kay

Transcriptional feedback loops constitute the molecular circuitry of the plant circadian clock. In Arabidopsis, a core loop is established between CCA1 and TOC1. Although CCA1 directly represses TOC1, the TOC1 protein has no DNA binding domains, which suggests that it cannot directly regulate CCA1. We established a functional genomic strategy that led to the identification of CHE, a TCP transcription factor that binds specifically to the CCA1 promoter. CHE is a clock component partially redundant with LHY in the repression of CCA1. The expression of CHE is regulated by CCA1, thus adding a CCA1/CHE feedback loop to the Arabidopsis circadian network. Because CHE and TOC1 interact, and CHE binds to the CCA1 promoter, a molecular linkage between TOC1 and CCA1 gene regulation is established.


The Plant Cell | 2007

PRR3 Is a Vascular Regulator of TOC1 Stability in the Arabidopsis Circadian Clock

Alessia Para; Eva M. Farré; Takato Imaizumi; José L. Pruneda-Paz; Franklin G. Harmon; Steve A. Kay

The pseudoresponse regulators (PRRs) participate in the progression of the circadian clock in Arabidopsis thaliana. The founding member of the family, TIMING OF CAB EXPRESSION1 (TOC1), is an essential component of the transcriptional network that constitutes the core mechanism of the circadian oscillator. Recent data suggest a role in circadian regulation for all five members of the PRR family; however, the molecular function of TOC1 or any other PRRs remains unknown. In this work, we present evidence for the involvement of PRR3 in the regulation of TOC1 protein stability. PRR3 was temporally coexpressed with TOC1 under different photoperiods, yet its tissue expression was only partially overlapping with that of TOC1, as PRR3 appeared restricted to the vasculature. Decreased expression of PRR3 resulted in reduced levels of TOC1 protein, while overexpression of PRR3 caused an increase in the levels of TOC1, all without affecting the amount of TOC1 transcript. PRR3 was able to bind to TOC1 in yeast and in plants and to perturb TOC1 interaction with ZEITLUPE (ZTL), which targets TOC1 for proteasome-dependent degradation. Together, our results indicate that PRR3 might function to modulate TOC1 stability by hindering ZTL-dependent TOC1 degradation, suggesting the existence of local regulators of clock activity and adding to the growing importance of posttranslational regulation in the design of circadian timing mechanisms in plants.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis

Alessia Para; Ying Li; Amy Marshall-Colon; Kranthi Varala; Nancy J. Francoeur; Tara M. Moran; Molly B. Edwards; Christopher R. Hackley; Bastiaan O. R. Bargmann; Kenneth D. Birnbaum; W. Richard McCombie; Gabriel Krouk; Gloria M. Coruzzi

Significance Cellular signals evoke rapid and broad changes in gene regulatory networks. To uncover these network dynamics, we developed an approach able to monitor primary targets of a transcription factor (TF) based solely on gene regulation, in the absence of detectable binding. This enabled us to follow the transient propagation of a nitrogen (N) nutrient signal as a direct impact of the master TF Basic Leucine Zipper 1 (bZIP1). Unexpectedly, the largest class of primary targets that exhibit transient associations with bZIP1 is uniquely relevant to the rapid and dynamic propagation of the N signal. Our ability to uncover this transient network architecture has revealed the “dark matter” of dynamic N nutrient signaling in plants that has previously eluded detection. The dynamic nature of gene regulatory networks allows cells to rapidly respond to environmental change. However, the underlying temporal connections are missed, even in kinetic studies, as transcription factor (TF) binding within at least one time point is required to identify primary targets. The TF-regulated but unbound genes are dismissed as secondary targets. Instead, we report that these genes comprise transient TF–target interactions most relevant to rapid signal transduction. We temporally perturbed a master TF (Basic Leucine Zipper 1, bZIP1) and the nitrogen (N) signal it transduces and integrated TF regulation and binding data from the same cell samples. Our enabling approach could identify primary TF targets based solely on gene regulation, in the absence of TF binding. We uncovered three classes of primary TF targets: (i) poised (TF-bound but not TF-regulated), (ii) stable (TF-bound and TF-regulated), and (iii) transient (TF-regulated but not TF-bound), the largest class. Unexpectedly, the transient bZIP1 targets are uniquely relevant to rapid N signaling in planta, enriched in dynamic N-responsive genes, and regulated by TF and N signal interactions. These transient targets include early N responders nitrate transporter 2.1 and NIN-like protein 3, bound by bZIP1 at 1–5 min, but not at later time points following TF perturbation. Moreover, promoters of these transient targets are uniquely enriched with cis-regulatory motifs coinherited with bZIP1 binding sites, suggesting a recruitment role for bZIP1. This transient mode of TF action supports a classic, but forgotten, “hit-and-run” transcription model, which enables a “catalyst TF” to activate a large set of targets within minutes of signal perturbation.


Nature Neuroscience | 2017

Activation of planarian TRPA1 by reactive oxygen species reveals a conserved mechanism for animal nociception

Oscar M. Arenas; Emanuela E. Zaharieva; Alessia Para; Constanza Vásquez-Doorman; Christian P. Petersen; Marco Gallio

All animals must detect noxious stimuli to initiate protective behavior, but the evolutionary origin of nociceptive systems is not well understood. Here we show that noxious heat and irritant chemicals elicit robust escape behaviors in the planarian Schmidtea mediterranea and that the conserved ion channel TRPA1 is required for these responses. TRPA1-mutant Drosophila flies are also defective in noxious-heat responses. We find that either planarian or human TRPA1 can restore noxious-heat avoidance to TRPA1-mutant Drosophila, although neither is directly activated by heat. Instead, our data suggest that TRPA1 activation is mediated by H2O2 and reactive oxygen species, early markers of tissue damage rapidly produced as a result of heat exposure. Together, our data reveal a core function for TRPA1 in noxious heat transduction, demonstrate its conservation from planarians to humans, and imply that animal nociceptive systems may share a common ancestry, tracing back to a progenitor that lived more than 500 million years ago.Animals must detect noxious stimuli to initiate protective behavior, but the evolutionary origin of nociceptive systems is poorly understood. The authors reveal a core function for TRPA1 in noxious heat transduction based on sensing H2O2 and ROS and demonstrate its conservation from planarians to humans.


Plant Physiology | 2016

The Dehydratase ADT3 Affects ROS Homeostasis and Cotyledon Development

Alessia Para; Durre Shahwar Muhammad; Danielle A. Orozco-Nunnelly; Ramis Memishi; Sophie Alvarez; Michael J. Naldrett; Katherine M. Warpeha

Arabidopsis seedlings mutated in the phenylalanine biosynthetic enzyme ADT3 cannot buffer reactive oxygen species, produce a defective cuticle, and display impaired cotyledon development. During the transition from seed to seedling, emerging embryos strategically balance available resources between building up defenses against environmental threats and initiating the developmental program that promotes the switch to autotrophy. We present evidence of a critical role for the phenylalanine (Phe) biosynthetic activity of AROGENATE DEHYDRATASE3 (ADT3) in coordinating reactive oxygen species (ROS) homeostasis and cotyledon development in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. We show that ADT3 is expressed in the cotyledon and shoot apical meristem, mainly in the cytosol, and that the epidermis of adt3 cotyledons contains higher levels of ROS. Genome-wide proteomics of the adt3 mutant revealed a general down-regulation of plastidic proteins and ROS-scavenging enzymes, corroborating the hypothesis that the ADT3 supply of Phe is required to control ROS concentration and distribution to protect cellular components. In addition, loss of ADT3 disrupts cotyledon epidermal patterning by affecting the number and expansion of pavement cells and stomata cell fate specification; we also observed severe alterations in mesophyll cells, which lack oil bodies and normal plastids. Interestingly, up-regulation of the pathway leading to cuticle production is accompanied by an abnormal cuticle structure and/or deposition in the adt3 mutant. Such impairment results in an increase in cell permeability and provides a link to understand the cell defects in the adt3 cotyledon epidermis. We suggest an additional role of Phe in supplying nutrients to the young seedling.


BioEssays | 2015

Hit-and-Run leaves its mark: Catalyst transcription factors and chromatin modification

Kranthi Varala; Ying Li; Amy Marshall-Colon; Alessia Para; Gloria M. Coruzzi

Understanding how transcription factor (TF) binding is related to gene regulation is a moving target. We recently uncovered genome‐wide evidence for a “Hit‐and‐Run” model of transcription. In this model, a master TF “hits” a target promoter to initiate a rapid response to a signal. As the “hit” is transient, the model invokes recruitment of partner TFs to sustain transcription over time. Following the “run”, the master TF “hits” other targets to propagate the response genome‐wide. As such, a TF may act as a “catalyst” to mount a broad and acute response in cells that first sense the signal, while the recruited TF partners promote long‐term adaptive behavior in the whole organism. This “Hit‐and‐Run” model likely has broad relevance, as TF perturbation studies across eukaryotes show small overlaps between TF‐regulated and TF‐bound genes, implicating transient TF‐target binding. Here, we explore this “Hit‐and‐Run” model to suggest molecular mechanisms and its biological relevance.


Plant Cell and Environment | 2012

Arabidopsis thaliana TERMINAL FLOWER2 is involved in light-controlled signalling during seedling photomorphogenesis

Ana Elisa Valdés; Kristina Rizzardi; Henrik Johannesson; Alessia Para; Annika Sundås-Larsson; Katarina Landberg

Plants respond to changes in the environment by altering their growth pattern. Light is one of the most important environmental cues and affects plants throughout the life cycle. It is perceived by photoreceptors such as phytochromes that absorb light of red and far-red wavelengths and control, for example, seedling de-etiolation, chlorophyll biosynthesis and shade avoidance response. We report that the terminal flower2 (tfl2) mutant, carrying a mutation in the Arabidopsis thaliana HETEROCHROMATIN PROTEIN1 homolog, functions in negative regulation of phytochrome dependent light signalling. tfl2 shows defects in both hypocotyl elongation and shade avoidance response. Double mutant analysis indicates that mutants of the red/far-red light absorbing phytochrome family of plant photoreceptors, phyA and phyB, are epistatic to tfl2 in far-red and red light, respectively. An overlap between genes regulated by light and by auxin has earlier been reported and, in tfl2 plants light-dependent auxin-regulated genes are misexpressed. Further, we show that TFL2 binds to IAA5 and IAA19 suggesting that TFL2 might be involved in regulation of phytochrome-mediated light responses through auxin action.


Developmental Biology | 2003

The pleiotropic mutation dar1 affects plant architecture in Arabidopsis thaliana

Alessia Para; Annika Sundås-Larsson

Shoot architecture is shaped upon the organogenic activity of the shoot apical meristem (SAM). Such an activity relies on the balance between the maintenance of a population of undifferentiated cells in the centre of the SAM and the recruitment of organ founder cells at the periphery. A novel mutation in Arabidopsis thaliana, distorted architecture1 (dar1), is characterised by disturbed phyllotaxy of the inflorescence and consumption of the apical meristem late in development. SEM and light microscopy analyses of the dar1 SAM reveal an abnormal partitioning of meristematic domains, and mutations known to affect the SAM structure and function were found to interact with dar1. Moreover, the mutant shows an alteration of the root apical meristem (RAM) structure. Those observations support the hypothesis that DAR1 has a role in meristem maintenance and it is required for the normal development of Arabidopsis inflorescence during plant life.


Archive | 2018

μ ChIP-Seq for Genome-Wide Mapping of In Vivo TF-DNA Interactions in Arabidopsis Root Protoplasts

Alessia Para; Ying Li; Gloria M. Coruzzi

Chromatin immunoprecipitation (ChIP) is a widely used method to map the position of DNA-binding proteins such as histones and transcription factors (TFs) upon their interaction with particular regions of the genome. To examine the genomic distribution of a TF in specific cell types in response to a change in nitrogen concentration, we developed a micro-ChIP (μChIP) protocol that requires only ~5000 Arabidopsis cells transiently expressing the Arabidopsis TF Basic Leucine Zipper 1 (bZIP1) fused to the glucocorticoid receptor (GR) domain that mediates nuclear import in the presence of dexamethasone. The DNA fragments obtained from the immunoprecipitation of bZIP1-DNA complexes were analyzed by next-generation sequencing (ChIP-seq), which helped uncover genome-wide associations between a bZIP1 and its targets in plant cells upon fluctuations in nitrogen availability.


bioRxiv | 2017

A core signaling mechanism at the origin of animal nociception

Oscar M. Arenas; Emanuela E. Zaharieva; Alessia Para; Constanza Vásquez-Doorman; Christian P. Petersen; Marco Gallio

All animals must detect noxious stimuli to initiate protective behavior, but the evolutionary origin of nociceptive systems is not well understood. Here, we show that a remarkably conserved signaling mechanism mediates the detection of noxious stimuli in animals as diverse as flatworms and humans. Planarian flatworms are amongst the simplest bilateral animals with a centralized nervous system, and capable of directed behavior. We demonstrate that noxious heat and irritant chemicals elicit robust escape behaviors in the planarian Schmidtea mediterranea, and that the conserved ion channel TRPA1 is required for these responses. TRPA1 mutant fruit flies (Drosophila) are also defective in the avoidance of noxious heat 1-3. Unexpectedly, we find that either the planarian or the human TRPA1 can restore noxious heat avoidance to TRPA1 mutant Drosophila, even though neither is directly activated by heat. Instead, our data suggest that TRPA1 activation is mediated by H2O2/Reactive Oxygen Species, early markers of tissue damage rapidly produced as a result of heat exposure. Together, our data reveal a core function for TRPA1 in noxious heat transduction, demonstrate its conservation from planarians to humans, and imply that human nociceptive systems may share a common ancestry with those of most extant animals, tracing back their origin to a progenitor that lived more than 500 million years ago.

Collaboration


Dive into the Alessia Para's collaboration.

Top Co-Authors

Avatar

Katarina Landberg

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Nilsson

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Gallio

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge