Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessia Tani is active.

Publication


Featured researches published by Alessia Tani.


Journal of Cellular Physiology | 2000

Aponecrosis: Morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis†

Lucia Formigli; Laura Papucci; Alessia Tani; Nicola Schiavone; Alessio Tempestini; Giovanni E. Orlandini; Sergio Capaccioli; S. Zecchi Orlandini

A rat fibroblastic cell line (rat‐1/myc‐ER™) was treated with different concentration of Antimycin A, a metabolic poison that affects mitochondrial respiratory chain complex III. The modes of cell death were analyzed by time‐lapse videomicroscopy, in situ end‐labeling (ISEL) technique, and ultrastructural analysis. Intracellular ATP levels were also measured in order to detect whether the energetic stores were determinant for the type of cell death. It was found that while apoptosis was the prevalent cell death in the fibroblasts treated with low doses, 100 or 200 μM Antimycin A, a new type of cell demise that shared dynamic, molecular, and morphological features with both apoptosis and necrosis represents the most common cell death when the cells were exposed to high doses, 300 or 400 μM, of the hypoxic stimulus. This new type of cell death has been chimerically termed aponecrosis. The inhibition of caspase 3, an enzyme critical for the apoptotic DNA degradation, caused a clear shift from aponecrosis to necrosis in the cell culture, suggesting that this new type of cell death could account for an incomplete execution of the apoptotic program and the following degeneration in necrosis. After being treated with higher doses, i.e., 1000 μM Antimycin A, almost all of the cells died by true necrosis. The analysis of the cellular energetic stores showed that the levels of ATP were a primary determinant in directing toward active cell death (apoptosis), aponecrosis, or necrosis. We conclude that chemically induced hypoxia produces different types of cell death depending on the intensity of the insult and on the ATP availability of the cell, and that the classic apoptosis and necrosis may represent only two extremes of a continuum of intermediate forms of cell demise. J. Cell. Physiol. 182:41–49, 2000.


Journal of Cellular and Molecular Medicine | 2007

Paracrine effects of transplanted myoblasts and relaxin on post-infarction heart remodelling.

Lucia Formigli; A.M. Perna; Elisabetta Meacci; Lorenzo Cinci; Martina Margheri; Silvia Nistri; Alessia Tani; Josh D. Silvertown; Giovanni E. Orlandini; Cristina Porciani; Sandra Zecchi-Orlandini; Jeffrey A. Medin; Daniele Bani

In the post‐infarcted heart, grafting of precursor cells may partially restore heart function but the improvement is modest and the mechanisms involved remain to be elucidated. Here, we explored this issue by transplanting C2C12 myoblasts, genetically engineered to express enhanced green fluorescent protein (eGFP) or eGFP and the cardiotropic hormone relaxin (RLX) through coronary venous route to swine with experimental chronic myocardial infarction. The rationale was to deliver constant, biologically effective levels of RLX at the site of cell engraftment. One month after engraftment, histological analysis showed that C2C12 myoblasts selectively settled in the ischaemic scar and were located around blood vessels showing an activated endothelium (ICAM‐1‐,VCAM‐positive). C2C12 myoblasts did not trans‐differentiate towards a cardiac phenotype, but did induce extracellular matrix remodelling by the secretion of matrix metalloproteases (MMP) and increase microvessel density through the expression of vascular endothelial growth factor (VEGF). Relaxin‐producing C2C12 myoblasts displayed greater efficacy to engraft the post‐ischaemic scar and to induce extracellular matrix re‐modelling and angiogenesis as compared with the control cells. By echocardio‐graphy, C2C12‐engrafted swine showed improved heart contractility compared with the ungrafted controls, especially those producing RLX. We suggest that the beneficial effects of myoblast grafting on cardiac function are primarily dependent on the paracrine effects of transplanted cells on extracellular matrix remodelling and vascularization. The combined treatment with myoblast transplantation and local RLX production may be helpful in preventing deleterious cardiac remodelling and may hold therapeutic possibility for post‐infarcted patients.


Anesthesiology | 2006

Neuroprotective effects of propofol in models of cerebral ischemia: Inhibition of mitochondrial swelling as a possible mechanism

Chiara Adembri; Luna Venturi; Alessia Tani; Alberto Chiarugi; Elena Gramigni; Andrea Cozzi; Tristano Pancani; Raffaele De Gaudio; Domenico E. Pellegrini-Giampietro

Background:Propofol (2,6-diisopropylphenol) has been shown to attenuate neuronal injury in a number of experimental conditions, but studies in models of cerebral ischemia have yielded conflicting results. Moreover, the mechanisms involved in its neuroprotective effects are yet unclear. Methods:The authors evaluated the neuroprotective effects of propofol in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation, an in vitro model of cerebral ischemia. To investigate its possible mechanism of action, the authors then examined whether propofol could reduce Ca2+-induced rat brain mitochondrial swelling, an index of mitochondrial membrane permeability, as well as the mitochondrial swelling evoked by oxygen-glucose deprivation in CA1 pyramidal cells by transmission electron microscopy. Finally, they evaluated whether propofol could attenuate the infarct size and improve the neurobehavioral outcome in rats subjected to permanent middle cerebral artery occlusion in vivo. Results:When present in the incubation medium during oxygen-glucose deprivation and the subsequent 24 h recovery period, propofol (10–100 &mgr;m) attenuated CA1 injury in hippocampal slices in vitro. Ca2+-induced brain mitochondrial swelling was prevented by 30–100 &mgr;m propofol, and so were the ultrastructural mitochondrial changes in CA1 pyramidal cells exposed to oxygen-glucose deprivation. Twenty-four hours after permanent middle cerebral artery occlusion, propofol (100 mg/kg, intraperitoneal) reduced the infarct size by approximately 30% when administered immediately after and up to 30 min after the occlusion. Finally, propofol administered within 30 min after middle cerebral artery occlusion was unable to affect the global neurobehavioral score but significantly preserved spontaneous activity in ischemic rats. Conclusions:These results show that propofol, at clinically relevant concentrations, is neuroprotective in models of cerebral ischemia in vitro and in vivo and that it may act by preventing the increase in neuronal mitochondrial swelling.


PLOS ONE | 2013

Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-β/Smad3 signaling.

Chiara Sassoli; Flaminia Chellini; Alessandro Pini; Alessia Tani; Silvia Nistri; Daniele Nosi; Sandra Zecchi-Orlandini; Daniele Bani; Lucia Formigli

The hormone relaxin (RLX) is produced by the heart and has beneficial actions on the cardiovascular system. We previously demonstrated that RLX stimulates mouse neonatal cardiomyocyte growth, suggesting its involvement in endogenous mechanisms of myocardial histogenesis and regeneration. In the present study, we extended the experimentation by evaluating the effects of RLX on primary cultures of neonatal cardiac stromal cells. RLX inhibited TGF-β1-induced fibroblast-myofibroblast transition, as judged by its ability to down-regulate α-smooth muscle actin and type I collagen expression. We also found that the hormone up-regulated metalloprotease (MMP)-2 and MMP-9 expression and downregulated the tissue inhibitor of metalloproteinases (TIMP)-2 in TGF-β1-stimulated cells. Interestingly, the effects of RLX on cardiac fibroblasts involved the activation of Notch-1 pathway. Indeed, Notch-1 expression was significantly decreased in TGF-β1-stimulatedfibroblasts as compared to the unstimulated controls; this reduction was prevented by the addition of RLX to TGF-β1-stimulated cells. Moreover, pharmacological inhibition of endogenous Notch-1 signaling by N-3,5-difluorophenyl acetyl-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT), a γ-secretase specific inhibitor, as well as the silencing of Notch-1 ligand, Jagged-1, potentiated TGF-β1-induced myofibroblast differentiation and abrogated the inhibitory effects of RLX. Interestingly, RLX and Notch-1 exerted their inhibitory effects by interfering with TGF-β1 signaling, since the addition of RLX to TGF-β1-stimulated cells caused a significant decrease in Smad3 phosphorylation, a typical downstream event of TGF-β1 receptor activation, while the treatment with a prevented this effect. These data suggest that Notch signaling can down-regulate TGF-β1/Smad3-induced fibroblast-myofibroblast transition and that RLX could exert its well known anti-fibrotic action through the up-regulation of this pathway. In conclusion, the results of the present study beside supporting the role of RLX in the field of cardiac fibrosis, provide novel experimental evidence on the molecular mechanisms underlying its effects.


Experimental Neurology | 2014

Glial role in oxaliplatin-induced neuropathic pain

Lorenzo Di Cesare Mannelli; Alessandra Pacini; Laura Micheli; Alessia Tani; Matteo Zanardelli; Carla Ghelardini

Oxaliplatin, a platinum-based chemotherapeutic agent, has become a standard treatment for advanced colorectal cancer. The dose-limiting toxicity of this compound is the development of peripheral neuropathy. A tangled panel of symptoms, sensory loss, paresthesia, dysesthesia and pain, may be disabling for patients and adversely affect their quality of life. Recently, we described a characteristic glial activation profile in a rat model of oxaliplatin-induced neuropathy. Glial cells are considered a new pharmacological target for neuropathic pain relief but its relevance in chemotherapy-dependent neuropathies is debated. Aimed to evaluate the significance of glial activation in pain generated by oxaliplatin, the microglial inhibitor minocycline or the astrocyte inhibitor fluorocitrate were continuously infused by intrathecal route in oxaliplatin-treated rats. Both compounds significantly reduced oxaliplatin-evoked pain though the efficacy of fluorocitrate was higher revealing a prominent role of astrocytes. Immunohistochemical analysis of the dorsal horn confirmed the specific Iba1-positive cell inhibition caused by minocycline as well as the selectivity of fluorocitrate on GFAP-positive cells. The activation of astrocytes in minocycline-treated rats suggests a microglia-independent modulation of astrocytes by oxaliplatin neurotoxicity. Neither the selective activation of astrocyte after minocycline treatment nor the exclusive microglial response after fluorocitrate is able to evoke pain. Morphometric and morphological determinations performed on dorsal root ganglia evidenced that the glial inhibitors did not prevent the oxaliplatin-dependent increase of eccentric nucleoli and multinucleolated neurons. The decrease of soma area was also unaltered. In summary, these data highlight the role of central glial cells in oxaliplatin-dependent neuropathic pain. On the other hand, glial inhibition is not associated with neuroprotective effects suggesting the need for careful modulation of glial signaling to prevent the pathophysiology that leads to persistent neuropathic pain.


Critical Care Medicine | 2008

Carbamylated erythropoietin is neuroprotective in an experimental model of traumatic brain injury.

Chiara Adembri; Alessandra Massagrande; Alessia Tani; Marco Miranda; Martina Margheri; Raffaele De Gaudio; Domenico E. Pellegrini-Giampietro

Objective:The well-documented neuroprotective effects of recombinant human erythropoietin (rhEPO) are commonly associated with untoward erythrocyte-stimulating effects (polycythemia), with subsequent risk of thromboembolic complications. A carbamylated-rhEPO (CEPO) derivative, which is neuroprotective but lacks hematopoietic activity, has been recently developed. In this study, we evaluated the neuroprotective capability of CEPO in an in vitro model of cerebral trauma in which rhEPO was previously shown to reduce posttraumatic cell death. Design:Prospective, controlled experiment. Setting:Animal, basic science laboratory. Subjects:Wistar rats, 8 days old. Interventions:Organotypic hippocampal slices, obtained from rat brains, were subjected to a well-characterized model of mechanical injury followed by addition of 10 IU/mL rhEPO, 10–100 IU/mL CEPO, or vehicle (injured control) to the incubation medium at different times to assess the temporal window of therapeutic neuroprotection. Measurements and Main Results:Posttraumatic cell death was quantified at 12, 24, or 48 hrs after injury by measuring propidium iodide fluorescence in the selectively vulnerable CA1 hippocampal area. Posttraumatic injury, observed in injured, vehicle-treated hippocampal slices, was significantly attenuated by addition of either 10 IU/mL rhEPO or 10 IU/mL CEPO. The neuroprotective efficacy of 10 IU/mL rhEPO or CEPO remained intact even when administration was delayed 1 hr after trauma. Qualitative microscopy in semithin sections showed that both rhEPO and CEPO exerted a marked pyramidal neuron-sparing effect. Conclusion:Our study shows that 10 IU/mL CEPO exerts neuroprotective effects comparable with those of rhEPO in an in vitro model of mechanical cerebral trauma. Because CEPO lacks hematopoietic effects and seems to possess a prolonged therapeutic time window, this erythropoietin derivative may represent an exciting new pharmacologic tool in treating patients with mechanical injury to the brain.


Cancer Research | 2009

Mitochondrial Expression and Functional Activity of Breast Cancer Resistance Protein in Different Multiple Drug-Resistant Cell Lines

Michela Solazzo; Ornella Fantappiè; Massimo D'Amico; Chiara Sassoli; Alessia Tani; Greta Cipriani; Costanza Bogani; Lucia Formigli; Roberto Mazzanti

The multidrug resistance (MDR) phenotype is characterized by the overexpression of a few transport proteins at the plasma membrane level, one of which is the breast cancer resistance protein (BCRP). These proteins are expressed in excretory organs, in the placenta and blood-brain barrier, and are involved in the transport of drugs and endogenous compounds. Because some of these proteins are expressed in the mitochondria, this study was designed to determine whether BCRP is expressed at a mitochondrial level and to investigate its function in various MDR and parental drug-sensitive cell lines. By using Western blot analysis, immunofluorescence confocal and electron microscopy, flow cytometry analysis, and the BCRP (ABCG-2) small interfering RNA, these experiments showed that BCRP is expressed in the mitochondrial cristae, in which it is functionally active. Mitoxantrone accumulation was significantly reduced in mitochondria and in cells that overexpress BCRP, in comparison to parental drug-sensitive cells. The specific inhibitor of BCRP, fumitremorgin c, increased the accumulation of mitoxantrone significantly in comparison with basal conditions in both whole cells and in mitochondria of BCRP-overexpressing cell lines. In conclusion, this study shows that BCRP is overexpressed and functionally active in the mitochondria of MDR-positive cancer cell lines. However, its presence in the mitochondria of parental drug-sensitive cells suggests that BCRP can be involved in the physiology of cancer cells.


Journal of Cellular and Molecular Medicine | 2011

Effects of S1P on skeletal muscle repair/regeneration during eccentric contraction

Chiara Sassoli; Lucia Formigli; Francesca Bini; Alessia Tani; Roberta Squecco; Chiara Battistini; Sandra Zecchi-Orlandini; Fabio Francini; Elisabetta Meacci

Skeletal muscle regeneration is severely compromised in the case of extended damage. The current challenge is to find factors capable of limiting muscle degeneration and/or potentiating the inherent regenerative program mediated by a specific type of myoblastic cells, the satellite cells. Recent studies from our groups and others have shown that the bioactive lipid, sphingosine 1‐phosphate (S1P), promotes myoblast differentiation and exerts a trophic action on denervated skeletal muscle fibres. In the present study, we examined the effects of S1P on eccentric contraction (EC)‐injured extensor digitorum longus muscle fibres and resident satellite cells. After EC, skeletal muscle showed evidence of structural and biochemical damage along with significant electrophysiological changes, i.e. reduced plasma membrane resistance and resting membrane potential and altered Na+ and Ca2+ current amplitude and kinetics. Treatment with exogenous S1P attenuated the EC‐induced tissue damage, protecting skeletal muscle fibre from apoptosis, preserving satellite cell viability and affecting extracellular matrix remodelling, through the up‐regulation of matrix metalloproteinase 9 (MMP‐9) expression. S1P also promoted satellite cell renewal and differentiation in the damaged muscle. Notably, EC was associated with the activation of sphingosine kinase 1 (SphK1) and with increased endogenous S1P synthesis, further stressing the relevance of S1P in skeletal muscle protection and repair/regeneration. In line with this, the treatment with a selective SphK1 inhibitor during EC, caused an exacerbation of the muscle damage and attenuated MMP‐9 expression. Together, these findings are in favour for a role of S1P in skeletal muscle healing and offer new clues for the identification of novel therapeutic approaches to counteract skeletal muscle damage and disease.


Journal of Periodontology | 2009

In vitro evaluation of the effects of low-intensity Nd:YAG laser irradiation on the inflammatory reaction elicited by bacterial lipopolysaccharide adherent to titanium dental implants.

Marco Giannelli; Daniele Bani; Alessia Tani; Alessandro Pini; Martina Margheri; Sandra Zecchi-Orlandini; Paolo Tonelli; Lucia Formigli

BACKGROUND The bacterial endotoxin lipopolysaccharide (LPS) represents a prime pathogenic factor of peri-implantitis because of its ability to adhere tenaciously to dental titanium implants. Despite this, the current therapeutic approach to this disease remains based mainly on bacterial decontamination, paying little attention to the neutralization of bioactive bacterial products. The purpose of the present study was to evaluate whether irradiation with low-energy neodymium-doped:yttrium, aluminum, and garnet (Nd:YAG) laser, in addition to the effects on bacterial implant decontamination, was capable of attenuating the LPS-induced inflammatory response. METHODS RAW 264.7 macrophages or human umbilical vein endothelial cells were cultured on titanium disks coated with Porphyromonas gingivalis LPS, subjected or not to irradiation with the Nd:YAG laser, and examined for the production of inflammatory cytokines and the expression of morphologic and molecular markers of cell activation. RESULTS Laser irradiation of LPS-coated titanium disks significantly reduced LPS-induced nitric oxide production and cell activation by the macrophages and strongly attenuated intercellular adhesion molecule-1 and vascular cell adhesion molecule expression, as well as interleukin-8 production by the endothelial cells. CONCLUSION By blunting the LPS-induced inflammatory response, Nd:YAG laser irradiation may be viewed as a promising tool for the therapeutic management of peri-implantitis.


Journal of Tissue Engineering and Regenerative Medicine | 2012

Dermal matrix scaffold engineered with adult mesenchymal stem cells and platelet-rich plasma as a potential tool for tissue repair and regeneration.

Lucia Formigli; Susanna Benvenuti; Raffaella Mercatelli; Franco Quercioli; Alessia Tani; Carlo Mirabella; Aida Dama; Riccardo Saccardi; Benedetta Mazzanti; Ilaria Cellai; Sandra Zecchi-Orlandini

The purpose of this study was to investigate the efficacy of Integra®, an artificial dermal matrix used as a dermal template for skin regeneration, to form a multifunctional scaffold with human bone marrow‐derived mesenchymal stem cells (hMSCs) and platelet‐rich plasma (PRP) for tissue engineering and regenerative technology. First, we showed that PRP, used as a supplement for growth medium, represented an optimal substitute for animal serum as well as a source of multiple growth factors, was able to satisfactorily support cell viability and cell proliferation and influence stemness gene expression in hMSCs. Moreover, Integra appeared to be a suitable substrate for hMSCs colonization, as judged by two‐photon microscopy combined with fluorescence lifetime imaging (FLIM) and confocal analysis. The cells were then seeded on Integra + PRP for 24 and 48 h. Notably, in these conditions, the seeded cells exhibited a greater aptitude to colonize the scaffold, showed improved cell adhesion and spreading as compared with those cultured on Integra alone, and acquired a fibroblast‐like phenotype, indicating that the bioengineered scaffold provided an appropriate environment for cellular growth and differentiation. In conclusion, these results, although preliminary, provide clues for the design of new therapeutic strategies for skin regeneration, consisting in the combination of mesenchymal stem cells with engineered biomaterials. Copyright

Collaboration


Dive into the Alessia Tani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge