Alessio D'Alessio
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alessio D'Alessio.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Alessio D'Alessio; Anna Riccioli; Paola Lauretti; Fabrizio Padula; Barbara Muciaccia; Paola De Cesaris; Antonio Filippini; Shigekazu Nagata; Elio Ziparo
The testis is the main source of Fas ligand (FasL) mRNA in rodents; it is generally believed that this molecule, expressed on bordering somatic Sertoli cells, bestows an immune-privileged status in the testis by eliminating infiltrating inflammatory Fas-bearing leukocytes. Our results demonstrate that the attribution of testicular expression of FasL to Sertoli cells is erroneous and that FasL transcription instead occurs in meiotic and postmeiotic germ cells, whereas the protein is only displayed on mature spermatozoa. These findings point to a significant role of the Fas system in the biology of mammalian reproduction.
American Journal of Pathology | 2005
Alessio D'Alessio; Rafia S. Al-Lamki; John R. Bradley; Jordan S. Pober
Caveolae are abundant in endothelial cells (ECs) in situ but markedly diminished in cultured cells, making it difficult to assess their role in cytokine signaling. We report here that the human EC line EA.hy926 retains an abundant caveolar system in culture. Tumor necrosis factor (TNF) receptor 1 (TNFR1/CD120a) was enriched in caveolae and co-immunoprecipitated with caveolin-1 from caveolae isolated from these cells. To further investigate the role(s) of caveolae in TNF signaling in ECs, cells were treated with methyl-beta-cyclodextrin to disrupt caveolae. Methyl-beta-cyclodextrin did not alter total cell surface expression of TNFR1 or TNF-induced degradation of IkappaBalpha, a measure of nuclear factor-kappaB activation, but it did inhibit TNF-induced phosphorylation of Akt, a measure of phosphatidylinositol-3 kinase activation. Serum-induced phosphorylation of AKT was unaffected. Treatment with TNF induced disappearance of TNFR1 from caveolae and dissociation from caveolin-1 within 5 minutes. In contrast to transferrin receptor, internalized TNFR1 did not co-localize with clathrin, except possibly in the Golgi, at any time point examined. By 60 minutes of treatment with TNF, TNFR1 appeared in endosomes. We conclude that caveolae function in ECs to allow TNFR1 to activate phosphatidylinositol-3 kinase and Akt, perhaps through receptor cross talk, and that ligand-induced internalization and trafficking of TNFR1 to endosomes may originate directly from this compartment.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Annarita Favia; Marianna Desideri; Guido Gambara; Alessio D'Alessio; M Ruas; Bianca Esposito; D Del Bufalo; J Parrington; Elio Ziparo; Fioretta Palombi; Antony Galione; Antonio Filippini
Significance The formation of new blood vessels (neoangiogenesis) accompanies tissue regeneration and healing, but is also crucial for tumor growth, hence understanding how capillaries are stimulated to grow in response to local cues is essential for the much sought-after aim of controlling this process. We have elucidated a Ca2+ signaling pathway involving NAADP, TPCs, and lysosomal Ca2+ release activated in vascular endothelial cells by VEGF, the main angiogenic growth factor, and we show that the angiogenic response can be abolished, in cultured cells and in vivo, by inhibiting components of this signaling cascade. The specificity of this pathway in terms of VEGF receptor subtype, intracellular messengers, target channels and Ca2+ storage organelles, offers new targets for novel antiangiogenic therapeutic strategies. Vascular endothelial growth factor (VEGF) and its receptors VEGFR1/VEGFR2 play major roles in controlling angiogenesis, including vascularization of solid tumors. Here we describe a specific Ca2+ signaling pathway linked to the VEGFR2 receptor subtype, controlling the critical angiogenic responses of endothelial cells (ECs) to VEGF. Key steps of this pathway are the involvement of the potent Ca2+ mobilizing messenger, nicotinic acid adenine-dinucleotide phosphate (NAADP), and the specific engagement of the two-pore channel TPC2 subtype on acidic intracellular Ca2+ stores, resulting in Ca2+ release and angiogenic responses. Targeting this intracellular pathway pharmacologically using the NAADP antagonist Ned-19 or genetically using Tpcn2−/− mice was found to inhibit angiogenic responses to VEGF in vitro and in vivo. In human umbilical vein endothelial cells (HUVECs) Ned-19 abolished VEGF-induced Ca2+ release, impairing phosphorylation of ERK1/2, Akt, eNOS, JNK, cell proliferation, cell migration, and capillary-like tube formation. Interestingly, Tpcn2 shRNA treatment abolished VEGF-induced Ca2+ release and capillary-like tube formation. Importantly, in vivo VEGF-induced vessel formation in matrigel plugs in mice was abolished by Ned-19 and, most notably, failed to occur in Tpcn2−/− mice, but was unaffected in Tpcn1−/− animals. These results demonstrate that a VEGFR2/NAADP/TPC2/Ca2+ signaling pathway is critical for VEGF-induced angiogenesis in vitro and in vivo. Given that VEGF can elicit both pro- and antiangiogenic responses depending upon the balance of signal transduction pathways activated, targeting specific VEGFR2 downstream signaling pathways could modify this balance, potentially leading to more finely tailored therapeutic strategies.
Blood | 2011
Bianca Esposito; Guido Gambara; Alexander M. Lewis; Fioretta Palombi; Alessio D'Alessio; Lewis Taylor; Armando A. Genazzani; Elio Ziparo; Antony Galione; Grant C. Churchill; Antonio Filippini
A variety of endothelial agonist-induced responses are mediated by rises in intracellular Ca(2+), suggesting that different Ca(2+) signatures could fine-tune specific inflammatory and thrombotic activities. In search of new intracellular mechanisms modulating endothelial effector functions, we identified nicotinic acid adenine dinucleotide phosphate (NAADP) as a crucial second messenger in histamine-induced Ca(2+) release via H1 receptors (H1R). NAADP is a potent intracellular messenger mobilizing Ca(2+) from lysosome-like acidic compartments, functionally coupled to the endoplasmic reticulum. Using the human EA.hy926 endothelial cell line and primary human umbilical vein endothelial cells, we show that selective H1R activation increases intracellular NAADP levels and that H1R-induced calcium release involves both acidic organelles and the endoplasmic reticulum. To assess that NAADP links H1R to Ca(2+)-signaling we used both microinjection of self-inactivating concentrations of NAADP and the specific NAADP receptor antagonist, Ned-19, both of which completely abolished H1R-induced but not thrombin-induced Ca(2+) mobilization. Interestingly, H1R-mediated von Willebrand factor (VWF) secretion was completely inhibited by treatment with Ned-19 and by siRNA knockdown of 2-pore channel NAADP receptors, whereas thrombin-induced VWF secretion failed to be affected. These findings demonstrate a novel and specific Ca(2+)-signaling mechanism activated through H1R in human endothelial cells, which reveals an obligatory role of NAADP in the control of VWF secretion.
Andrologia | 2003
Anna Riccioli; L Salvati; Alessio D'Alessio; Donatella Starace; Claudia Giampietri; P De Cesaris; Antonio Filippini; Elio Ziparo
The Fas system is involved in the control of immune system homeostasis and nonfunctional Fas system leads to autoimmune disease in mice and humans. The Fas system is a mechanism through which cells expressing Fas ligand (FasL) induce apoptosis of Fas expressing cells. In mouse and rat, the testis represents the main source of constitutive FasL in the body. The roles so far proposed for this molecule in the testis, such as maintenance of immunoprivilege and regulation of physiological germ cell apoptosis, need to be reconsidered as both hypotheses are based on an erroneous cellular location of FasL in the seminiferous epithelium. Recently, we demonstrated that in rodents FasL mRNA is present in germ cells and not in Sertoli cells, and that FasL protein is displayed on the surface of spermatozoa. Here we propose that, for the mouse spermatozoa, the FasL may represent a self‐defence mechanism against lymphocytes present in the female genital tract. To verify this hypothesis, we performed crossings between males gld, with nonfunctional FasL, and syngenic or nonsyngenic females. We observed a significant decrease of litter size in outbred crossings with gld males compared with wild‐type males, suggesting a possible role of FasL in immunoprotection of the sperm in the female genital tract. The possibility that in humans, by analogy with mouse, FasL plays a self‐protective role for the spermatozoon cannot be excluded, and awaits experimental information on the expression of FasL on human sperm cells.
Cell Death & Differentiation | 2003
Claudia Giampietri; Simonetta Petrungaro; Pierpaolo Coluccia; Alessio D'Alessio; Donatella Starace; Anna Riccioli; Fabrizio Padula; Srinivasa M. Srinivasula; E S Alnemri; Fioretta Palombi; Antonio Filippini; Elio Ziparo; P De Cesaris
AbstractApoptosis control in adult testis is crucial to achieve normal spermatogenesis. In this study c-FLIP, an apoptosis-modulating protein, was investigated. In Western blot and immunohistochemical analyses, the 55 KDa c-FLIP long isoform (c-FLIPL) was found to be expressed strongly in spermatocytes and spermatids, at low levels in spermatogonia and at almost undetectable levels in Sertoli cells. This expression pattern was confirmed by Northern blot analyses. Further experiments carried out on GC-1spg germ cell line revealed that reducing c-FLIPL expression increases Fas-dependent apoptosis. Conversely, restoring c-FLIPL expression reduces this response to control levels. Caspase-10 expression was found to match c-FLIPL expression pattern; further, caspase-10 activation upon anti-Fas treatment inversely correlated with c-FLIPL expression. Finally, TUNEL staining of seminiferous tubules incubated with anti-Fas antibody showed that apoptosis occurs mostly in basally located germ cells, indicating that such cells, expressing low levels of c-FLIPL, are sensitive to Fas-mediated apoptosis.These data indicate for the first time that c-FLIPL might control germ cell apoptosis and caspase activity in the adult testis.
American Journal of Pathology | 2008
Meng Liu; Martin S. Kluger; Alessio D'Alessio; Guillermo García-Cardeña; Jordan S. Pober
We analyzed tumor necrosis factor (TNF) responses of human umbilical artery and vein endothelial cells (HUAECs and HUVECs) in organ and cell culture. In organ culture, TNF induced expression of E-selectin, VCAM-1, and ICAM-1 on HUVECs but only ICAM-1 on HUAECs. Activation of nuclear factor-kappaB, c-jun, and ATF2 by TNF was comparable in HUAECs and HUVECs, whereas binding of transcription factors and p300 co-activator to the E-selectin enhancer was lower in HUAECs compared to HUVECs. In cell culture, HUAECs rapidly acquired inducible E-selectin and VCAM-1 whereas ICAM-1 inducibility decreased. Culture of HUVECs rapidly decreased TNF responses of all three genes. By 72 hours in cell culture, TNF-treated HUVECs and HUAECs showed comparable adhesion molecule induction and transcription factor binding to the E-selectin enhancer. Freshly isolated HUAECs expressed higher levels of Kruppel-like factor 2 (KLF2) than HUVECs, consistent with greater KLF2 induction by arterial levels of shear stress in vitro. KLF2 expression decreased rapidly in both cell types during culture. Transduction of HUVECs with KLF2 reduced TNF-mediated induction of E-selectin and VCAM-1 while increasing ICAM-1 induction and reduced transcription factor/co-activator binding to the E-selectin enhancer. In conclusion, the differential responses of HUAECs and HUVECs to TNF in organ culture correlate with transcription factor/co-activator binding to DNA and converge during cell culture. Flow-induced expression of KLF2 contributes to the in situ responses of HUAECs but not of HUVECs.
Journal of Cellular Physiology | 2008
Guido Gambara; Richard A. Billington; Marcella Debidda; Alessio D'Alessio; Fioretta Palombi; Elio Ziparo; Armando A. Genazzani; Antonio Filippini
We have investigated the role of NAADP‐mediated Ca2+ mobilization in endothelin (ET) signaling via endothelin receptor subtype A (ETA) and endothelin receptor subtype B (ETB) in rat peritubular smooth muscle cells. Microinjection and extracellular application of NAADP were both able to elicit Ca2+ release which was blocked by inhibitory concentrations of NAADP, by impairing Ca2+ uptake in acidic stores with bafilomycin, and by thapsigargin. Ca2+ release in response to selective ETB stimulation was abolished by inhibition of NAADP signaling through the same strategies, while these treatments only partially impaired ETA‐dependent Ca2+ signaling, showing that transduction of the ETB signal is dependent on NAADP. In addition, we show that lipid rafts/caveolae contain ETA, ETB, and NAADP/cADPR generating enzyme CD38 and that stimulation of ETB receptors results in increased CD38 activity; interestingly, ETB‐ (but not ETA‐) mediated Ca2+ responses were antagonized by disruption of lipid rafts/caveolae with methyl‐β‐cyclodextrin. These data demonstrate a primary role of NAADP in ETB‐mediated Ca2+ signaling and strongly suggest a novel role of lipid rafts/caveolae in triggering ET‐induced NAADP signaling. J. Cell. Physiol. 216: 396–404, 2008.
The FASEB Journal | 2004
Donatella Starace; Anna Riccioli; Alessio D'Alessio; Claudia Giampietri; Simonetta Petrungaro; Roberta Galli; Antonio Filippini; Elio Ziparo; Paola De Cesaris
TNF‐α is known to induce a strong up‐regulation of Fas expression in mouse Sertoli cell cultures, leading to their apoptosis triggered by effector FasL‐bearing cells. These data suggest that increased Fas expression on the cell surface might be a key event in the pathogenesis of autoimmune orchitis, by inducing a leakage of the blood‐tubular barrier as a consequence of Sertoli cell apoptosis. In the present paper, we have investigated the signal transduction mechanisms involved in the regulation of Fas expression induced by TNF‐α in mouse Sertoli cells. We studied the role of the transcription factor NF‐κB and of MAPKs in regulating Fas expression. By using Sertoli cells transfected with a NF‐κB Luc reporter gene, we proved that TNF‐α activates the IκB/NF‐κB system. Moreover, the use of the proteasome inhibitor lactacystin led us to demonstrate that NF‐κB is required for TNF‐α mediated Fas expression. By using specific inhibitors for each MAPK, we confirmed the pivotal role of the IκB/NF‐κB system by demonstrating that ERKs, p38, and JNK are not involved in Fas up‐regulation by TNF‐α. The comprehension of these pathways could be relevant to the knowledge of the pathogenesis of autoimmune disorders in immune privileged districts of the body.
Journal of Biological Chemistry | 2010
Alessio D'Alessio; Martin S. Kluger; Jie Hui Li; Rafia S. Al-Lamki; John R. Bradley; Jordan S. Pober
TNFR1 (tumor necrosis factor receptor 1) localizes to caveolae of human endothelial-derived EA.hy926 cells. Transduced TNFR1 molecules lacking amino acid residues 229–244 (spanning the transmembrane/intercellular boundary) are expressed on the cell surface equivalently to full-length TNFR1 molecules but incompletely localize to caveolae. A peptide containing this sequence pulls down CAV-1 (caveolin-1) and TNFR1 from cell lysates but fails to do so following disruption of caveolae with methyl-β-cyclodextrin. We previously reported that methyl-β-cyclodextrin eliminates caveolae and blocks tumor necrosis factor (TNF)-induced internalization of TNFR1 but not TNF-induced activation of NF-κB in EA.hy926 cells. Both CAV-1 and FLOT-2 (flotillin-2), organizing proteins of caveolae and lipid rafts, respectively, associate with caveolae in EA.hy926 cells. Small interfering RNA-mediated knockdown of CAV-1 but not FLOT-2 strikingly reduces caveolae number. Both knockdowns reduce total TNFR1 protein expression, but neither prevents TNFR1 localization to low density membrane domains, TNF-induced internalization of TNFR1, or NF-κB activation by TNF. Both CAV-1 and FLOT-2 knockdowns reduce TNF-mediated activation of stress-activated protein kinase (SAPK). However, both knockdowns reduce expression of TRAF2 (TNF receptor-associated factor-2) protein, and small interfering RNA targeting of TRAF2 also selectively inhibits SAPK activation. We conclude that TNFR1 contains a membrane-proximal sequence that targets the receptor to caveolae/lipid rafts. Neither TNFR1 targeting to nor internalization from these low density membrane domains depends upon CAV-1 or FLOT-2. Furthermore, both NF-κB and SAPK activation appear independent of both TNFR1 localization to low density membrane domains and to TNF-induced receptor internalization.