Alessio Gizzi
Università Campus Bio-Medico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alessio Gizzi.
Frontiers in Physiology | 2013
Alessio Gizzi; Elizabeth M. Cherry; Robert F. Gilmour; Stefan Luther; Simonetta Filippi; Flavio H. Fenton
Alternans of action potential duration has been associated with T wave alternans and the development of arrhythmias because it produces large gradients of repolarization. However, little is known about alternans dynamics in large mammalian hearts. Using optical mapping to record electrical activations simultaneously from the epicardium and endocardium of 9 canine right ventricles, we demonstrate novel arrhythmogenic complex spatiotemporal dynamics. (i) Alternans predominantly develops first on the endocardium. (ii) The postulated simple progression from normal rhythm to concordant to discordant alternans is not always observed; concordant alternans can develop from discordant alternans as the pacing period is decreased. (iii) In contrast to smaller tissue preparations, multiple stationary nodal lines may exist and need not be perpendicular to the pacing site or to each other. (iv) Alternans has fully three-dimensional dynamics and the epicardium and endocardium can show significantly different dynamics: multiple nodal surfaces can be transmural or intramural and can form concave/convex surfaces resulting in islands of discordant alternans. (v) The complex spatiotemporal patterns observed during alternans are very sensitive to both the site of stimulation and the stimulation history. Alternans in canine ventricles not only exhibit larger amplitudes and persist for longer cycle length regimes compared to those found in smaller mammalian hearts, but also show novel dynamics not previously described that enhance dispersion and show high sensitivity to initial conditions. This indicates some underlying predisposition to chaos and can help to guide the design of new drugs and devices controlling and preventing arrhythmic events.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science | 2015
Sander Land; Viatcheslav Gurev; Sander Arens; Christoph M. Augustin; Lukas Baron; Robert C. Blake; Chris P. Bradley; Sebastián Castro; Andrew Crozier; Marco Favino; Thomas Fastl; Thomas Fritz; Hao Gao; Alessio Gizzi; Boyce E. Griffith; Daniel E. Hurtado; Rolf Krause; Xiaoyu Luo; Martyn P. Nash; Simone Pezzuto; Gernot Plank; Simone Rossi; Daniel Ruprecht; Gunnar Seemann; Nicolas Smith; Joakim Sundnes; J. Jeremy Rice; Natalia A. Trayanova; Dafang Wang; Zhinuo Jenny Wang
Models of cardiac mechanics are increasingly used to investigate cardiac physiology. These models are characterized by a high level of complexity, including the particular anisotropic material properties of biological tissue and the actively contracting material. A large number of independent simulation codes have been developed, but a consistent way of verifying the accuracy and replicability of simulations is lacking. To aid in the verification of current and future cardiac mechanics solvers, this study provides three benchmark problems for cardiac mechanics. These benchmark problems test the ability to accurately simulate pressure-type forces that depend on the deformed objects geometry, anisotropic and spatially varying material properties similar to those seen in the left ventricle and active contractile forces. The benchmark was solved by 11 different groups to generate consensus solutions, with typical differences in higher-resolution solutions at approximately 0.5%, and consistent results between linear, quadratic and cubic finite elements as well as different approaches to simulating incompressible materials. Online tools and solutions are made available to allow these tests to be effectively used in verification of future cardiac mechanics software.
Mathematical Medicine and Biology-a Journal of The Ima | 2014
Ricardo Ruiz-Baier; Alessio Gizzi; Simone Rossi; Christian Cherubini; Aymen Laadhari; Simonetta Filippi; Alfio Quarteroni
We investigate the interaction of intracellular calcium spatio-temporal variations with the self-sustained contractions in cardiac myocytes. A consistent mathematical model is presented considering a hyperelastic description of the passive mechanical properties of the cell, combined with an active-strain framework to explain the active shortening of myocytes and its coupling with cytosolic and sarcoplasmic calcium dynamics. A finite element method based on a Taylor-Hood discretization is employed to approximate the nonlinear elasticity equations, whereas the calcium concentration and mechanical activation variables are discretized by piecewise linear finite elements. Several numerical tests illustrate the ability of the model in predicting key experimentally established characteristics including: (i) calcium propagation patterns and contractility, (ii) the influence of boundary conditions and cell shape on the onset of structural and active anisotropy and (iii) the high localized stress distributions at the focal adhesions. Besides, they also highlight the potential of the method in elucidating some important subcellular mechanisms affecting, e.g. cardiac repolarization.
Physical Biology | 2010
Alessio Gizzi; Christian Cherubini; S Migliori; Rossana Alloni; R Portuesi; Simonetta Filippi
Paralytic ileus is a temporary syndrome with impairment of peristalsis and no passage of food through the intestine. Although improvements in supportive measures have been achieved, no therapy useful to specifically reduce or eliminate the motility disorder underlying postoperative ileus has been developed yet. In this paper, we draw a plausible, physiologically fine-tuned scenario, which explains a possible cause of paralytic ileus. To this aim we extend the existing 1D intestinal electrophysiological Aliev-Richards-Wikswo ionic model based on a double-layered structure in two and three dimensions. Thermal coupling is introduced here to study the influence of temperature gradients on intestine tissue which is an important external factor during surgery. Numerical simulations present electrical spiral waves similar to those experimentally observed already in the heart, brain and many other excitable tissues. This fact seems to suggest that such peculiar patterns, here electrically and thermally induced, may play an important role in clinically experienced disorders of the intestine, then requiring future experimental analyses in the search for possible implications for medical and physiological practice and bioengineering.
Europace | 2014
Simonetta Filippi; Alessio Gizzi; Christian Cherubini; Stefan Luther; Flavio H. Fenton
AIMS Hypothermia is well known to be pro-arrhythmic, yet it has beneficial effects as a resuscitation therapy and valuable during intracardiac surgeries. Therefore, we aim to study the mechanisms that induce fibrillation during hypothermia. A better understanding of the complex spatiotemporal dynamics of heart tissue as a function of temperature will be useful in managing the benefits and risks of hypothermia. METHODS AND RESULTS We perform two-dimensional numerical simulations by using a minimal model of cardiac action potential propagation fine-tuned on experimental measurements. The model includes thermal factors acting on the ionic currents and the gating variables to correctly reproduce experimentally recorded restitution curves at different temperatures. Simulations are implemented using WebGL, which allows long simulations to be performed as they run close to real time. We describe (i) why fibrillation is easier to induce at low temperatures, (ii) that there is a minimum size required for fibrillation that depends on temperature, (iii) why the frequency of fibrillation decreases with decreasing temperature, and (iv) that regional cooling may be an anti-arrhythmic therapy for small tissue sizes however it may be pro-arrhythmic for large tissue sizes. CONCLUSION Using a mathematical cardiac cell model, we are able to reproduce experimental observations, quantitative experimental results, and discuss possible mechanisms and implications of electrophysiological changes during hypothermia.
Physics Letters A | 2014
Alessandro Loppini; Antonio Capolupo; Christian Cherubini; Alessio Gizzi; Marta Bertolaso; Simonetta Filippi; Giuseppe Vitiello
Abstract Beta cells in pancreas represent an example of coupled biological oscillators which via communication pathways, are able to synchronize their electrical activity, giving rise to pulsatile insulin release. In this work we numerically analyze scale free self-similarity features of membrane voltage signal power density spectrum, through a stochastic dynamical model for beta cells in the islets of Langerhans fine tuned on mouse experimental data. Adopting the algebraic approach of coherent state formalism, we show how coherent molecular domains can arise from proper functional conditions leading to a parallelism with “phase transition” phenomena of field theory.
Journal of Biomechanics | 2016
Anna Pandolfi; Alessio Gizzi; Marcello Vasta
We discuss a constitutive model for stochastically distributed fiber reinforced tissues, where the active behavior of the fibers depends on the relative orientation of the electric field. Unlike other popular approaches, based on numerical integration over the unit sphere, or on the use of second order structure tensors, for the passive behavior we adopt a second order approximation of the strain energy density of the distribution. The purely mechanical quantities result to be dependent on two (second and fourth order, respectively) averaged structure tensors. In line with the approximation used for the passive behavior, we model the active behavior accounting for the statistical fiber distribution. We extend the Helmholtz free energy density by introducing a directional active potential, dependent on a stochastic permittivity tensor associated to a particular direction, and approximate the total active potential through a second order Taylor expansion of the permittivity tensor. The approximation allows us to derive explicitly the active stress and the active constitutive tensors, which result to be dependent on the same two averaged structure tensors that characterize the passive response. Active anisotropy follows from the distribution of the fibers and inherits its stochastic parameters. Examples of passive and active behaviors predicted by the model in terms of response to biaxial testing are presented, and comparisons with passive experimental data are provided.
Medical Engineering & Physics | 2017
Daniele Bianchi; Elisabetta Monaldo; Alessio Gizzi; Michele Marino; Simonetta Filippi; Giuseppe Vairo
A novel fluid-structure computational framework for vascular applications is herein presented. It is developed by combining the double multi-scale nature of vascular physiopathology in terms of both tissue properties and blood flow. Addressing arterial tissues, they are modelled via a nonlinear multiscale constitutive rationale, based only on parameters having a clear histological and biochemical meaning. Moreover, blood flow is described by coupling a three-dimensional fluid domain (undergoing physiological inflow conditions) with a zero-dimensional model, which allows to reproduce the influence of the downstream vasculature, furnishing a realistic description of the outflow proximal pressure. The fluid-structure interaction is managed through an explicit time-marching approach, able to accurately describe tissue nonlinearities within each computational step for the fluid problem. A case study associated to a patient-specific aortic abdominal aneurysmatic geometry is numerically investigated, highlighting advantages gained from the proposed multiscale strategy, as well as showing soundness and effectiveness of the established framework for assessing useful clinical quantities and risk indexes.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2014
Annamaria Altomare; Alessio Gizzi; Michele Pier Luca Guarino; Alessandro Loppini; Silvia Cocca; Mariangela Dipaola; Rossana Alloni; Michele Cicala; Simonetta Filippi
It has been shown, in animal models, that gastrointestinal tract (GIT) motility is influenced by temperature; nevertheless, the basic mechanism governing thermal GIT smooth muscle responses has not been fully investigated. Studies based on physiologically tuned mathematical models have predicted that thermal inhomogeneity may induce an electrochemical destabilization of peristaltic activity. In the present study, the effect of thermal cooling on human colonic muscle strip (HCMS) contractility was studied. HCMSs were obtained from disease-free margins of resected segments for cancer. After removal of the mucosa and serosa layers, strips were mounted in separate chambers. After 30 min, spontaneous contractions developed, which were measured using force displacement transducers. Temperature was changed every hour (37, 34, and 31°C). The effect of cooling was analyzed on mean contractile activity, oscillation amplitude, frequency, and contraction to ACh (10(-5) M). At 37°C, HCMSs developed a stable phasic contraction (~0.02 Hz) with a significant ACh-elicited mean contractile response (31% and 22% compared with baseline in the circular and longitudinal axis, respectively). At a lower bath temperature, higher mean contractile amplitude was observed, and it increased in the presence of ACh (78% and 43% higher than the basal tone in the circular and longitudinal axis, respectively, at 31°C). A simplified thermochemomechanical model was tuned on experimental data characterizing the stress state coupling the intracellular Ca(2+) concentration to tissue temperature. In conclusion, acute thermal cooling affects colonic muscular function. Further studies are needed to establish the exact mechanisms involved to better understand clinical consequences of hypothermia on intestinal contractile activity.
Diabetes-metabolism Research and Reviews | 2013
Rosalba Portuesi; Christian Cherubini; Alessio Gizzi; Raffaella Buzzetti; Paolo Pozzilli; Simonetta Filippi
The integrity of the interactions and the 3D architecture among beta cell populations in pancreatic islets is critical for proper biosynthesis, storage and release of insulin. The aim of this study was to evaluate the effect on electrophysiological signalling of beta cells that is produced by progressive lymphocytic islet cell infiltration (insulitis), by modelling the disruption of pancreatic islet anatomy as a consequence of insulitis and altered glucose concentrations.