Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessio Lodola is active.

Publication


Featured researches published by Alessio Lodola.


Nature Neuroscience | 2012

A catalytically silent FAAH-1 variant drives anandamide transport in neurons.

Jin Fu; Giovanni Bottegoni; Oscar Sasso; Rosalia Bertorelli; Walter Rocchia; Matteo Masetti; Ana Guijarro; Alessio Lodola; Andrea Armirotti; Gianpiero Garau; Tiziano Bandiera; Angelo Reggiani; Marco Mor; Andrea Cavalli; Daniele Piomelli

The endocannabinoid anandamide is removed from the synaptic space by a selective transport system, expressed in neurons and astrocytes, that remains molecularly uncharacterized. Here we describe a partly cytosolic variant of the intracellular anandamide-degrading enzyme fatty acid amide hydrolase-1 (FAAH-1), termed FAAH-like anandamide transporter (FLAT), that lacked amidase activity but bound anandamide with low micromolar affinity and facilitated its translocation into cells. Known anandamide transport inhibitors, such as AM404 and OMDM-1, blocked these effects. We also identified a competitive antagonist of the interaction of anandamide with FLAT, the phthalazine derivative ARN272, that prevented anandamide internalization in vitro, interrupted anandamide deactivation in vivo and exerted profound analgesic effects in rodent models of nociceptive and inflammatory pain, which were mediated by CB1 cannabinoid receptors. The results identify FLAT as a critical molecular component of anandamide transport in neural cells and a potential target for therapeutic drugs.


Chemistry & Biology | 2009

Discovery of Potent and Reversible Monoacylglycerol Lipase Inhibitors

Alvin R. King; Emmanuel Y. Dotsey; Alessio Lodola; Kwang-Mook Jung; Azar Ghomian; Yan Qiu; Jin Fu; Marco Mor; Daniele Piomelli

Monoacylglycerol lipase (MGL) is a serine hydrolase involved in the biological deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). Previous efforts to design MGL inhibitors have focused on chemical scaffolds that irreversibly block the activity of this enzyme. Here, we describe two naturally occurring terpenoids, pristimerin and euphol, which inhibit MGL activity with high potency (median effective concentration, IC(50) = 93 nM and 315 nM, respectively) through a reversible mechanism. Mutational and modeling studies suggest that the two agents occupy a common hydrophobic pocket located within the putative lid domain of MGL, and each reversibly interacts with one of two adjacent cysteine residues (Cys(201) and Cys(208)) flanking such pocket. This previously unrecognized regulatory region might offer a molecular target for potent and reversible inhibitors of MGL.


British Journal of Pharmacology | 2009

A critical cysteine residue in monoacylglycerol lipase is targeted by a new class of isothiazolinone-based enzyme inhibitors

Alvin R. King; Alessio Lodola; Caterina Carmi; Jin Fu; Marco Mor; Daniele Piomelli

Background and purpose:u2002 Monoacylglycerol lipase (MGL) is a presynaptic serine hydrolase that inactivates the endocannabinoid neurotransmitter, 2‐arachidonoyl‐sn‐glycerol. Recent studies suggest that cysteine residues proximal to the enzyme active site are important for MGL function. In the present study, we characterize the role of cysteines in MGL function and identify a series of cysteine‐reactive agents that inhibit MGL activity with nanomolar potencies by interacting with cysteine residue 208.


PLOS ONE | 2011

Lithocholic Acid Is an Eph-ephrin Ligand Interfering with Eph-kinase Activation

Carmine Giorgio; Iftiin Hassan Mohamed; Lisa Flammini; Elisabetta Barocelli; Matteo Incerti; Alessio Lodola; Massimiliano Tognolini

Eph-ephrin system plays a central role in a large variety of human cancers. In fact, alterated expression and/or de-regulated function of Eph-ephrin system promotes tumorigenesis and development of a more aggressive and metastatic tumour phenotype. In particular EphA2 upregulation is correlated with tumour stage and progression and the expression of EphA2 in non-trasformed cells induces malignant transformation and confers tumorigenic potential. Based on these evidences our aim was to identify small molecules able to modulate EphA2-ephrinA1 activity through an ELISA-based binding screening. We identified lithocholic acid (LCA) as a competitive and reversible ligand inhibiting EphA2-ephrinA1 interaction (Kiu200a=u200a49 µM). Since each ephrin binds many Eph receptors, also LCA does not discriminate between different Eph-ephrin binding suggesting an interaction with a highly conserved region of Eph receptor family. Structurally related bile acids neither inhibited Eph-ephrin binding nor affected Eph phosphorylation. Conversely, LCA inhibited EphA2 phosphorylation induced by ephrinA1-Fc in PC3 and HT29 human prostate and colon adenocarcinoma cell lines (IC50u200a=u200a48 and 66 µM, respectively) without affecting cell viability or other receptor tyrosine-kinase (EGFR, VEGFR, IGFR1β, IRKβ) activity. LCA did not inhibit the enzymatic kinase activity of EphA2 at 100 µM (LANCE method) confirming to target the Eph-ephrin protein-protein interaction. Finally, LCA inhibited cell rounding and retraction induced by EphA2 activation in PC3 cells. In conclusion, our findings identified a hit compound useful for the development of molecules targeting ephrin system. Moreover, as ephrin signalling is a key player in the intestinal cell renewal, our work could provide an interesting starting point for further investigations about the role of LCA in the intestinal homeostasis.


PLOS ONE | 2012

A Catalytic Mechanism for Cysteine N-Terminal Nucleophile Hydrolases, as Revealed by Free Energy Simulations

Alessio Lodola; Davide Branduardi; Marco De Vivo; Luigi Capoferri; Marco Mor; Daniele Piomelli; Andrea Cavalli

The N-terminal nucleophile (Ntn) hydrolases are a superfamily of enzymes specialized in the hydrolytic cleavage of amide bonds. Even though several members of this family are emerging as innovative drug targets for cancer, inflammation, and pain, the processes through which they catalyze amide hydrolysis remains poorly understood. In particular, the catalytic reactions of cysteine Ntn-hydrolases have never been investigated from a mechanistic point of view. In the present study, we used free energy simulations in the quantum mechanics/molecular mechanics framework to determine the reaction mechanism of amide hydrolysis catalyzed by the prototypical cysteine Ntn-hydrolase, conjugated bile acid hydrolase (CBAH). The computational analyses, which were confirmed in water and using different CBAH mutants, revealed the existence of a chair-like transition state, which might be one of the specific features of the catalytic cycle of Ntn-hydrolases. Our results offer new insights on Ntn-mediated hydrolysis and suggest possible strategies for the creation of therapeutically useful inhibitors.


Molecular Cancer Therapeutics | 2008

Dual mechanisms of action of the 5-benzylidene-hydantoin UPR1024 on lung cancer cell lines

Andrea Cavazzoni; Roberta R. Alfieri; Caterina Carmi; Valentina Zuliani; Maricla Galetti; Claudia Fumarola; Raffaele Frazzi; Mara A. Bonelli; Fabrizio Bordi; Alessio Lodola; Marco Mor; Pier Giorgio Petronini

In this study, we examined the mechanism of action of the novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor 5-benzylidene-hydantoin UPR1024, whose structure was designed to interact at the ATP-binding site of EGFR. The compound had antiproliferative and proapoptotic effects when tested on the non–small cell lung cancer cell line A549. The growth inhibitory effect was associated with an accumulation of the cells in the S phase of the cell cycle. Moreover, UPR1024 induced significant level of DNA strand breaks associated with increased expression of p53 and p21WAF1 proteins, suggesting an additive mechanism of action. The presence of wild-type p53 improved the drug efficacy, although the effect was also detectable in p53 null cells. We also noted apoptotic cell death after treatment with UPR1024 at concentrations above 10 μmol/L for >24 h, with involvement of both the extrinsic and intrinsic pathways. The present data show that UPR1024 may be considered a combi-molecule capable of both blocking EGFR tyrosine kinase activity and inducing genomic DNA damage. UPR1024 or its derivatives might serve as a basis for development of drugs for the treatment of lung cancer in patients resistant to classic tyrosine kinase inhibitors. [Mol Cancer Ther 2008;7(2):361–70]


International Journal of Molecular Sciences | 2013

Homology Models of Melatonin Receptors: Challenges and Recent Advances

Daniele Pala; Alessio Lodola; Annalida Bedini; Gilberto Spadoni; Silvia Rivara

Melatonin exerts many of its actions through the activation of two G protein-coupled receptors (GPCRs), named MT1 and MT2. So far, a number of different MT1 and MT2 receptor homology models, built either from the prototypic structure of rhodopsin or from recently solved X-ray structures of druggable GPCRs, have been proposed. These receptor models differ in the binding modes hypothesized for melatonin and melatonergic ligands, with distinct patterns of ligand-receptor interactions and putative bioactive conformations of ligands. The receptor models will be described, and they will be discussed in light of the available information from mutagenesis experiments and ligand-based pharmacophore models. The ability of these ligand-receptor complexes to rationalize structure-activity relationships of known series of melatonergic compounds will be commented upon.


British Journal of Pharmacology | 2014

UniPR129 is a competitive small molecule Eph‐ephrin antagonist blocking in vitro angiogenesis at low micromolar concentrations

Iftiin Hassan-Mohamed; Carmine Giorgio; Matteo Incerti; Simonetta Russo; Daniele Pala; Elena B. Pasquale; Ilaria Zanotti; Paola Vicini; Elisabetta Barocelli; Silvia Rivara; Marco Mor; Alessio Lodola; Massimiliano Tognolini

The Eph receptor tyrosine kinases and their ephrin ligands are key players in tumorigenesis and many reports have correlated changes in their expression with a poor clinical prognosis in many solid tumours. Agents targeting the Eph‐ephrin system might emerge as new tools useful for the inhibition of different components of cancer progression. Even if different classes of small molecules targeting Eph‐ephrin interactions have been reported, their use is hampered by poor chemical stability and low potency. Stable and potent ligands are crucial to achieve robust pharmacological performance.


Molecular Nutrition & Food Research | 2015

The ellagitannin colonic metabolite urolithin D selectively inhibits EphA2 phosphorylation in prostate cancer cells

Carmine Giorgio; Pedro Mena; Daniele Del Rio; Furio Brighenti; Elisabetta Barocelli; Iftiin Hassan-Mohamed; Donatella Callegari; Alessio Lodola; Massimiliano Tognolini

SCOPEnThe Eph-ephrin system comprises emerging proteins involved in many pathophysiological processes. The pharmacological activity of the main metabolites derived from the intake of some classes of (poly)phenolic compounds, such as caffeoylquinic acids, flavan-3-ols, and ellagitannins, on the Eph-ephrin interaction was evaluated at physiological concentrations. Functional studies to elucidate their role in prostate cancer were also performed.nnnMETHODS AND RESULTSnAmong the 21 phenolics screened by an ELISA-binding assay, just urolithin C, urolithin D, and ellagic acid succeeded to inhibit the EphA2-ephrin-A1 binding. Urolithin D, the most active, was a competitive and reversible antagonist of EphA receptors able to discriminate between EphA and EphB receptors, showing intra-classes selectivity. Molecular modeling and structure-activity relationships shed light on the binding mode and selective activity of urolithin D. This catabolite blocked EphA2 phosphorylation mediated by ephrin-A1, while lacking cytotoxicity and anti-proliferative effects, and was inactive on the EphA2 kinase assay.nnnCONCLUSIONnThe mechanisms behind the cancer preventive properties of foods rich in flavan-3-ols and caffeoylquinic acids are not associated with metabolic pathways directly linked to the Eph-ephrin system. However, the ellagitannin-derived colonic metabolite urolithin D was able to exert remarkable and selective EphA-ephrin-A inhibition, which might impact on prostate cancer prevention.


European Journal of Medicinal Chemistry | 2016

Combined inhibition of the EGFR/AKT pathways by a novel conjugate of quinazoline with isothiocyanate

Andrea Tarozzi; Chiara Marchetti; Benedetta Nicolini; Massimo D'Amico; Nicole Ticchi; Letizia Pruccoli; Vincenzo Tumiatti; Elena Simoni; Alessio Lodola; Marco Mor; Andrea Milelli; Anna Minarini

Epidermal growth factor receptor inhibitors (EGFR-TKIs) represent a class of compounds widely used in anticancer therapy. An increasing number of studies reports on combination therapies in which the block of the EGFR-TK activity is associated with inhibition of its downstream pathways, as PI3K-Akt. Sulforaphane targets the PI3K-Akt pathway whose dysregulation is implicated in many functions of cancer cells. According to these considerations, a series of multitarget molecules have been designed by combining key structural features derived from an EGFR-TKI, PD168393, and the isothiocyanate sulforaphane. Among the obtained molecules 1-6, compound 6 emerges as a promising lead compound able to exert antiproliferative and proapoptotic effects in A431 epithelial cancer cell line by covalently binding to EGFR-TK, and reducing the phosphorylation of Akt without affecting the total Akt levels.

Collaboration


Dive into the Alessio Lodola's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin Fu

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge