Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessio Picchi is active.

Publication


Featured researches published by Alessio Picchi.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2015

Experimental and Numerical Calculation of Turbulent Timescales at the Exit of an Engine Representative Combustor Simulator

Charlie Koupper; Laurent Gicquel; Florent Duchaine; Tommaso Bacci; Bruno Facchini; Alessio Picchi; Lorenzo Tarchi; Guillaume Bonneau

To deepen the knowledge of the interaction between modern lean burn combustors and high pressure turbines, a non-reactive real scale annular trisector Combustor Simulator (CS) has been assembled at University of Florence, with the goal of investigating and characterizing the combustor aerothermal field as well as the hot streak transport towards the high pressure vanes. To generate hot streaks and simulate lean burn combustor behaviors, the rig is equipped with axial swirlers fed by a main air flow stream that is heated up to 531 K, while liners with effusion cooling holes are fed by air at ambient temperature. Detailed experimental investigations are then performed with the aim of characterizing the turbulence quantities at the exit of the combustion module, and specifically evaluating an integral scale of turbulence. To do so, an automatic traverse system is mounted at the exit of the CS and equipped to perform Hot Wire Anemometry (HWA) measurements. In this paper, two-point correlations are computed from the time signal of the axial velocity giving access to an evaluation of the turbulence timescales at each measurement point. For assessment of the advanced numerical method that is Large Eddy Simulation (LES), the same methodology is applied to a LES prediction of the CS. Although comparisons seem relevant and easily accessible, both approaches and contexts have fundamental differences: mostly in terms of duration of the signals acquired experimentally and numerically but also with potentially different acquisition frequencies. In the exercise that aims at comparing high-order statistics and diagnostics, the specificity of comparing experimental and numerical results is comprehensively discussed. Attention is given to the importance of the acquisition frequency, intrinsic bias of having a short duration signal and influence of the investigating windows. For an adequate evaluation of the turbulent time scales, it is found that comparing experiments and numerics for high Reynolds number flows inferring small-scale phenomena requires to obey a set of rules, otherwise important errors can be made. If adequately processed, LES and HWA are found to agree well indicating the potential of LES for such problems.Copyright


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2015

Adiabatic Effectiveness and Flow Field Measurements in a Realistic Effusion Cooled Lean Burn Combustor

Antonio Andreini; Riccardo Becchi; Bruno Facchini; Lorenzo Mazzei; Alessio Picchi; Fabio Turrini

Over the last ten years, there have been significant technological advances toward the reduction of NOx emissions from civil aircraft engines, strongly aimed at meeting stricter and stricter legislation requirements. Nowadays, the most prominent way to meet the target of reducing NOx emissions in modern combustors is represented by lean burn swirl stabilized technology. The high amount of air admitted through a lean burn injection system is characterized by very complex flow structures such as recirculations, vortex breakdown, and precessing vortex core (PVC) that may deeply interact in the near wall region of the combustor liner. This interaction makes challenging the estimation of film cooling distribution, commonly generated by slot and effusion systems. The main purpose of the present work is the characterization of the flow field and the adiabatic effectiveness due to the interaction of swirling flow, generated by real geometry injectors, and a liner cooling scheme made up of a slot injection and an effusion array. The experimental apparatus has been developed within EU project LEMCOTEC (low emissions core-engine technologies) and consists of a nonreactive three-sectors planar rig; the test model is characterized by a complete cooling system and three swirlers, replicating the geometry of a GE Avio PERM (partially evaporated and rapid mixing) injector technology. Flow field measurements have been performed by means of a standard 2D PIV (particle image velocimetry) technique, while adiabatic effectiveness maps have been obtained using PSP (pressure sensitive paint) technique. PIV results show the effect of coolant injection in the corner vortex region, while the PSP measurements highlight the impact of swirled flow on the liner film protection separating the contribution of slot and effusion flows. Furthermore, an additional analysis, exploiting experimental results in terms of heat transfer coefficient, has been performed to estimate the net heat flux reduction (NHFR) on the cooled test plate.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2015

Effect of Slot Injection and Effusion Array on the Liner Heat Transfer Coefficient of a Scaled Lean-Burn Combustor With Representative Swirling Flow

Antonio Andreini; Bruno Facchini; Riccardo Becchi; Alessio Picchi; Fabio Turrini

International standards regarding polluting emissions from civil aircraft engines are becoming gradually even more stringent. Nowadays, the most prominent way to meet the target of reducing NOx emissions in modern aero-engine combustors is represented by lean burn technology. Swirl injectors are usually employed to provide the dominant flame stabilization mechanism coupled to high efficiency fuel atomization solutions. These systems generate very complex flow structures such as recirculations, vortex breakdown and processing vortex core, that affect the distribution and therefore the estimation of heat loads on the gas side of the liner as well as the interaction with the cooling system flows.The main purpose of the present work is to provide detailed measurements of Heat Transfer Coefficient (HTC) on the gas side of a scaled combustor liner highlighting the impact of the cooling flows injected through a slot system and an effusion array. Furthermore, for a deeper understanding of the interaction phenomena between gas and cooling flows, a standard 2D PIV (Particle Image Velocimetry) technique has been employed to characterize the combustor flow field.The experimental arrangement has been developed within EU project LEMCOTEC and consists of a non-reactive three sectors planar rig installed in an open loop wind tunnel. Three swirlers, replicating the real geometry of a GE Avio PERM (Partially Evaporated and Rapid Mixing) injector technology, are used to achieve representative swirled flow conditions in the test section. The effusion geometry is composed by a staggered array of 1236 circular holes with an inclination of 30deg, while the slot exit has a constant height of 5mm. The experimental campaign has been carried out using a TLC (Thermochromic Liquid Crystals) steady state technique with a thin Inconel heating foil and imposing several cooling flow conditions in terms of slot coolant consumption and effusion pressure drop. A data reduction procedure has been developed to take into account the non-uniform heat generation and the heat loss across the liner plate.Results, in terms of 2D maps and averaged distributions of HTC have been supported by flow field measurements with 2D PIV technique focussed on the corner recirculation region.Copyright


ASME Turbo Expo 2014: Turbine Technical Conference and Exposition | 2014

Performance Improvement of a Heavy Duty GT: Adiabatic Effectiveness Measurements on First Stage Vanes in Representative Engine Conditions

Luca Andrei; Bruno Facchini; Gianluca Caciolli; Alessio Picchi; Lorenzo Tarchi; Michele D’Ercole; Luca Innocenti; Alessandro Russo

Nowadays total inlet temperature of gas turbine is far above the permissible metal temperature; as a consequence, advanced cooling techniques must be applied to protect from thermal stress and to reduce the risk of creep failure, oxidation and corrosion of components located in the high pressure stages, such as first vane. Film cooling has been widely used to control temperature of high temperature and high pressure vanes. In a film cooled vane the air taken from last compressor stages is ejected through discrete holes to provide a cold layer between hot mainstream and turbine components. A comprehensive understanding of phenomena concerning the complex interaction of hot gases with coolant flows in a vane passage plays a major role in the definition of a well performing film cooling scheme.The aim of this study is the measurement of adiabatic effectiveness on the first stage vane of a heavy duty GT by means of coolant concentration technique based on Pressure Sensitive Paint (PSP). The investigation of coolant distribution on airfoils and platforms was done in order to make feasible possible optimizations and to validate numerical design tools. The experimental analysis was performed on a static test article replicating an annular sector made up of two cooled airfoils and three passages. An actual first stage vane (scale 1:1) with complete internal cooling scheme has been tested at different coolant conditions and imposing two values of density ratio (DR = 1.0;1.5). Film protection was generated by a showerhead on the leading edge and by cylindrical holes on pressure and suction side and on the platforms; finally a cutback with elongated pedestals was employed for the protection of the pressure side trailing edge. Results, reported in terms of detailed 2D maps of film cooling effectiveness and averaged trends, point out the effect of coolant-to-mainstream mass ratio and density ratio. Beyond the results obtained in this specific vane geometry, the use of PSP was proven to be a promising technique for direct measurements on real geometries: as a matter of fact, the opportunity to get detailed results of pressure and adiabatic effectiveness distributions is of outstanding importance for the design and optimization of vanes and blades cooling systems.Copyright


ASME Turbo Expo 2013: Turbine Technical Conference and Exposition | 2013

Experimental and Theoretical Investigation of Thermal Effectiveness in Multi-Perforated Plates for Combustor Liner Effusion Cooling

Antonio Andreini; Bruno Facchini; Alessio Picchi; Lorenzo Tarchi; Fabio Turrini

State-of-the-art liner cooling technology for modern combustors is represented by effusion cooling (or full-coverage film cooling). Effusion is a very efficient cooling strategy based on the use of multi-perforated liners, where metal temperature is lowered by the combined protective effect of coolant film and heat removal through forced convection inside each hole. The aim of this experimental campaign is the evaluation of the thermal performance of multi-perforated liners with geometrical and fluid-dynamic parameters ranging among typical combustor engine values. Results were obtained as adiabatic film effectiveness following the mass transfer analogy by the use of Pressure Sensitive Paint, while local values of overall effectiveness were obtained by eight thermocouples housed in as many dead holes about 2 mm below the investigated surface. Concerning the tested geometries, different porosity levels were considered: such values were obtained both increasing the hole diameter and pattern spacing. Then the effect of hole inclination and aspect ratio pattern shape were tested to assess the impact of typical cooling system features. Seven multi perforated planar plates, reproducing the effusion arrays of real combustor liners, were tested imposing 6 blowing ratios in the range 0.5–5. Test samples were made of stainless steel (AISI304) in order to achieve Biot number similitude for overall effectiveness tests.To extend the validity of the survey a correlative analysis was performed to point out, in an indirect way, the augmentation of hot side heat transfer coefficient due to effusion jets. Finally, to address the thermal behaviour of the different geometries in presence of gas side radiation, additional simulations were performed considering different levels of radiative heat flux.Copyright


ASME Turbo Expo 2015: Turbine Technical Conference and Exposition | 2015

Turbulence Field Measurements at the Exit of a Combustor Simulator Dedicated to Hot Streaks Generation

Tommaso Bacci; Bruno Facchini; Alessio Picchi; Lorenzo Tarchi; Charlie Koupper; Jean-Louis Champion

In order to deepen the knowledge of the interaction between modern lean burn combustors and high pressure turbines, a real scale annular three sector combustor simulator has been assembled at University of Florence, with the goal of investigating and characterizing the generated flow field. To generate hot streaks and simulate lean burn combustors behavior, the rig is equipped with axial swirlers, fed by main air flow that is heated up to 531 K, and liners with effusion cooling holes that are fed by air at ambient temperature. The three sector configuration is used to reproduce the periodicity on the central sector.Ducts of different lengths have been mounted on the swirlers to reduce the interaction of the mainstream with the coolant. Such configurations have been tested, using different measurement techniques, in order to highlight the differences in the resulting flow fields.The work presented in this paper shows the experimental campaign carried out to investigate the flow turbulence at combustor exit, in isothermal conditions, by means of hot wire anemometry. The goal has been achieved by investigating each test point twice, using an automatic traverse system equipped, in turn, with two split-fiber probes, that allow to measure the velocity components on two planes orthogonal to each other. A method for the time correlation of the signals obtained by the two different tests has been used.In order to analyse the turbulence decay towards the vanes location, such measurements have been performed on two different planes: one located in correspondence of the combustor exit and the further one placed downstream, in the virtual location of the vanes leading edges.Copyright


ASME Turbo Expo 2015: Turbine Technical Conference and Exposition | 2015

Effect of Slot Injection and Effusion Array on the Liner Heat Transfer Coefficient of a Scaled Lean Burn Combustor With Representative Swirling Flow

Antonio Andreini; Riccardo Becchi; Bruno Facchini; Alessio Picchi; Fabio Turrini

International standards regarding polluting emissions from civil aircraft engines are becoming gradually even more stringent. Nowadays, the most prominent way to meet the target of reducing NOx emissions in modern aero-engine combustors is represented by lean burn technology. Swirl injectors are usually employed to provide the dominant flame stabilization mechanism coupled to high efficiency fuel atomization solutions. These systems generate very complex flow structures such as recirculations, vortex breakdown and processing vortex core, that affect the distribution and therefore the estimation of heat loads on the gas side of the liner as well as the interaction with the cooling system flows.The main purpose of the present work is to provide detailed measurements of Heat Transfer Coefficient (HTC) on the gas side of a scaled combustor liner highlighting the impact of the cooling flows injected through a slot system and an effusion array. Furthermore, for a deeper understanding of the interaction phenomena between gas and cooling flows, a standard 2D PIV (Particle Image Velocimetry) technique has been employed to characterize the combustor flow field.The experimental arrangement has been developed within EU project LEMCOTEC and consists of a non-reactive three sectors planar rig installed in an open loop wind tunnel. Three swirlers, replicating the real geometry of a GE Avio PERM (Partially Evaporated and Rapid Mixing) injector technology, are used to achieve representative swirled flow conditions in the test section. The effusion geometry is composed by a staggered array of 1236 circular holes with an inclination of 30deg, while the slot exit has a constant height of 5mm. The experimental campaign has been carried out using a TLC (Thermochromic Liquid Crystals) steady state technique with a thin Inconel heating foil and imposing several cooling flow conditions in terms of slot coolant consumption and effusion pressure drop. A data reduction procedure has been developed to take into account the non-uniform heat generation and the heat loss across the liner plate.Results, in terms of 2D maps and averaged distributions of HTC have been supported by flow field measurements with 2D PIV technique focussed on the corner recirculation region.Copyright


ASME Turbo Expo 2015: Turbine Technical Conference and Exposition | 2015

Experimental Investigation of Swirl and Flow Structure Inside a Rotor-Stator Cavity

Bruno Facchini; Daniele Massini; Alessio Picchi; Mirko Micio; Francesco Bavassano; Marco Mantero

In order to ensure safety, predictable and acceptable life of gas turbine engines an important task is the design of the secondary air system (SAS).To avoid hot gas path ingestion, one of the most critical concerns in a well-performing SAS is the understanding of the air motion within of the stator-rotor cavity systems. The state of the art of the fluid solver tools used to predict the flow behaviour inside cavities is generally based on codes with correlative approaches, in order to reduce calculation times and computational resources.In order to improve the precision of correlations, by means of data with reduced associated uncertainty, experimentalists performed an experimental campaign selecting a simple test case composed by a rotating disc facing a flat stator. Imposing several working conditions, the rotational speed was varied in order to gain a rotational Reynolds number up to 1.2 × 106 which is one order of magnitude less than real seals working conditions. The analysis of the swirl rate as well as the frictional moment exerted by the rotor on the fluid was carried out based on different sealing mass flows. Pressure probes were used to obtain radial distribution of static and total pressure on the stator side. In order to deepen the analysis on the flow behaviour inside cavity, flow field measurements using a 2D PIV system was performed on two different planes: velocity contours were used to help the detection of the core region.Finally, the wide database of the experimental results were used to improve a simple model able to predict the behaviour of rotor-stator cavities including the effect of the inlet geometry of the cavity.Copyright


ASME Turbo Expo 2014: Turbine Technical Conference and Exposition | 2014

Experimental Investigation of the Flow Field and the Heat Transfer on a Scaled Cooled Combustor Liner With Realistic Swirling Flow Generated by a Lean-Burn Injection System

Antonio Andreini; Gianluca Caciolli; Bruno Facchini; Alessio Picchi; Fabio Turrini

Lean burn swirl stabilized combustors represent the key technology to reduce NOx emissions in modern aircraft engines. The high amount of air admitted through a lean-burn injection system is characterized by very complex flow structures such as recirculations, vortex breakdown and processing vortex core, that may deeply interact in the near wall region of the combustor liner. This interaction and its effects on the local cooling performance make the design of the cooling systems very challenging, accounting for the design and commission of new test rigs for detailed analysis. The main purpose of the present work is the characterization of the flow field and the wall heat transfer due to the interaction of a swirling flow coming out from real geometry injectors and a slot cooling system which generates film cooling in the first part of the combustor liner. The experimental setup consists of a non-reactive three sector planar rig in an open loop wind tunnel; the rig, developed within the EU project LEMCOTEC, includes three swirlers, whose scaled geometry reproduces the real geometry of an Avio Aero PERM (Partially Evaporated and Rapid Mixing) injector technology, and a simple cooling scheme made up of a slot injection, reproducing the exhaust dome cooling mass flow. Test were carried out imposing realistic combustor operating conditions, especially in terms of reduced mass flow rate and pressure drop across the swirlers. The flow field is investigated by means of PIV, while the measurement of the heat transfer coefficient is performed through Thermochromic Liquid Crystals steady state technique. PIV results show the behavior of flow field generated by the injectors, their mutual interaction and the impact of the swirled main flow on the stability of the slot film cooling. TLC measurements, reported in terms of detailed 2D heat transfer coefficient maps, highlight the impact of the swirled flow and slot film cooling on wall heat transfer.Copyright


Journal of Turbomachinery-transactions of The Asme | 2014

Experimental and Theoretical Investigation of Thermal Effectiveness in Multiperforated Plates for Combustor Liner Effusion Cooling

Antonio Andreini; Bruno Facchini; Alessio Picchi; Lorenzo Tarchi; Fabio Turrini

Collaboration


Dive into the Alessio Picchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge