Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessio Zaccone is active.

Publication


Featured researches published by Alessio Zaccone.


Physical Review E | 2009

Breakup of dense colloidal aggregates under hydrodynamic stresses

Alessio Zaccone; Miroslav Soos; Marco Lattuada; Hua Wu; Matthäus U. Bäbler; Massimo Morbidelli

Flow-induced aggregation of colloidal particles leads to aggregates with fairly high fractal dimension (df approximately 2.4-3.0) which are directly responsible for the observed rheological properties of sheared dispersions. We address the problem of the decrease in aggregate size with increasing hydrodynamic stress, as a consequence of breakup, by means of a fracture-mechanics model complemented by experiments in a multipass extensional (laminar) flow device. Evidence is shown that as long as the inner density decay with linear size within the aggregate (due to fractality) is not negligible (as for df approximately 2.4-2.8), this imposes a substantial limitation to the hydrodynamic fragmentation process as compared with nonfractal aggregates (where the critical stress is practically size independent). This is due to the fact that breaking up a fractal object leads to denser fractals which better withstand stress. In turbulent flows, accounting for intermittency introduces just a small deviation with respect to the laminar case, while the model predictions are equally in good agreement with experiments from the literature. Our findings are summarized in a diagram for the breakup exponent (governing the size versus stress scaling) as a function of fractal dimension.


Physical Review Letters | 2011

Quantifying the reversible association of thermosensitive nanoparticles.

Alessio Zaccone; Jérôme Crassous; Benjamin Béri; Matthias Ballauff

Under many conditions, biomolecules and nanoparticles associate by means of attractive bonds, due to hydrophobic attraction. Extracting the microscopic association or dissociation rates from experimental data is complicated by the dissociation events and by the sensitivity of the binding force to temperature (T). Here we introduce a theoretical model that combined with light-scattering experiments allows us to quantify these rates and the reversible binding energy as a function of T. We apply this method to the reversible aggregation of thermoresponsive polystyrene/poly(N-isopropylacrylamide) core-shell nanoparticles, as a model system for biomolecules. We find that the binding energy changes sharply with T, and relate this remarkable switchable behavior to the hydrophobic-hydrophilic transition of the thermosensitive nanoparticles.


Physical Review Letters | 2009

Elasticity of arrested short-ranged attractive colloids: Homogeneous and heterogeneous glasses

Alessio Zaccone; Hua Wu; Emanuela Del Gado

We evaluate the elasticity of arrested short-ranged attractive colloids by combining an analytically solvable elastic model with a hierarchical arrest scheme. This new approach allows us to discriminate the microscopic (primary particle-level) from the mesoscopic (cluster-level) contribution to the macroscopic shear modulus. The results quantitatively predict experimental data in a wide range of volume fractions and indicate in which cases the relevant contribution is due to mesoscopic structures. On this basis we propose that different arrested states of short-ranged attractive colloids can be meaningfully distinguished as homogeneous or heterogeneous colloidal glasses in terms of the length scale which controls their elastic behavior.


Physical Review B | 2011

Approximate analytical description of the nonaffine response of amorphous solids

Alessio Zaccone; Enzo Scossa-Romano

An approximation scheme for model disordered solids is proposed that leads to the fully analytical evaluation of the elastic constants under explicit account of the inhomogeneity (nonaffinity) of the atomic displacements. The theory is in quantitative agreement with simulations for central-force systems and predicts the vanishing of the shear modulus at the isostatic point with the linear law {mu}{approx}(z-2d), where z is the coordination number. The vanishing of rigidity at the isostatic point is shown to be a consequence of the canceling out of positive affine and negative nonaffine terms.


Journal of Physical Chemistry B | 2008

Correlation between Colloidal Stability and Surfactant Adsorption/Association Phenomena Studied by Light Scattering

Alessio Zaccone; Hua Wu; Marco Lattuada; Massimo Morbidelli

The stability of a colloidal system composed of styrene-acrylate copolymer particles and potassium stearate (KS) anionic surfactant molecules has been determined in terms of the Fuchs stability ratio, W, as a function of the surfactant concentration, by measuring the initial aggregation kinetics using the small-angle light scattering (SALS) technique. The structure of the particle surface is peculiar, being irregularly patterned, and thus represents a model system to investigate colloidal stability of nonsmooth colloidal particles. From the SALS kinetic experiments, it is found that the stability increases dramatically with KS concentration until the saturation of the available surface occurs. At concentrations higher than the saturation concentration, the W value decreases markedly with KS, as a consequence of attractive depletion forces induced by formation of micelles in the water phase. The adsorption isotherm, determined through the surface tension technique, agrees with the W vs KS behavior, with respect to the onset of saturation and the surface-per-molecule value, and it can be described by the two-step Langmuir isotherm. Static light scattering spectra of the particles at different adsorbed amounts of KS have been fitted by means of the Lorenz-Mie theory and accounting for the experimentally determined particle size distribution. The increase in the particle diameter imputable to KS adsorption is sizable. Stability data measured under high fluid shear in a turbulent capillary (in the absence of any screening salt) fit well into this scenario. However, depletion forces are shown to be noncooperative with turbulent shear in the absence of screening electrolytes.


Physical Review Letters | 2011

Shear-driven solidification of dilute colloidal suspensions

Alessio Zaccone; Daniele Gentili; Hua Wu; Massimo Morbidelli; Emanuela Del Gado

We show that shear-induced solidification of dilute charge-stabilized colloids is due to the interplay between shear-induced formation and breakage of large non-Brownian clusters. While their size is limited by breakage, their number density increases with shearing time. Upon flow cessation, the dense packing of clusters interconnects into a rigid state by means of grainy bonds, each involving a large number of primary colloidal bonds. The emerging picture of shear-driven solidification in dilute colloidal suspensions combines the gelation of Brownian systems with the jamming of athermal systems.


Catalysis Letters | 2015

Ligand-free Gold Nanoparticles as a Reference Material for Kinetic Modelling of Catalytic Reduction of 4-Nitrophenol

Sasa Gu; Julian Kaiser; Galina Marzun; Andreas Ott; Yan Lu; Matthias Ballauff; Alessio Zaccone; Stephan Barcikowski; Philipp Wagener

The reduction of 4-nitrophenol by sodium borohydride is a common model reaction to test the catalytic activity of metal nanoparticles. As all reaction steps proceed solely on the surface of the metal nanoparticles (Langmuir–Hinshelwood model), ligand-coverage of metal nanoparticles impedes the merging of theory and experiment. Therefore we analyzed the catalytic activity of bare gold nanoparticles prepared by laser ablation in liquid without any stabilizers or ligands. The catalytic reaction is characterized by a full kinetic analysis including 4-hydroxylaminophenol as an intermediate species. Excellent agreement between theory and experiment is found. Moreover, the suspension of the nanoparticles remains stable. Hence, ligand-free nanoparticles can be used as a reference material for mechanistic studies of catalytic reactions. In addition, the analysis shows that gold nanoparticles synthesized by laser ablation are among the most active catalysts for this reaction.Graphical Abstract


Physical Review Letters | 2013

Disorder-assisted melting and the glass transition in amorphous solids

Alessio Zaccone; Eugene M. Terentjev

The mechanical response of solids depends on temperature, because the way atoms and molecules respond collectively to deformation is affected at various levels by thermal motion. This is a fundamental problem of solid state science and plays a crucial role in materials science. In glasses, the vanishing of shear rigidity upon increasing temperature is the reverse process of the glass transition. It remains poorly understood due to the disorder leading to nontrivial (nonaffine) components in the atomic displacements. Our theory explains the basic mechanism of the melting transition of amorphous (disordered) solids in terms of the lattice energy lost to this nonaffine motion, compared to which thermal vibrations turn out to play only a negligible role. The theory is in good agreement with classic data on melting of amorphous polymers (for which no alternative theory can be found in the literature) and offers new opportunities in materials science.


Journal of Chemical Physics | 2013

Colloidal gelation with variable attraction energy

Alessio Zaccone; Jérôme Crassous; Matthias Ballauff

We present an approximation scheme to the master kinetic equations for aggregation and gelation with thermal breakup in colloidal systems with variable attraction energy. With the cluster fractal dimension df as the only phenomenological parameter, rich physical behavior is predicted. The viscosity, the gelation time, and the cluster size are predicted in closed form analytically as a function of time, initial volume fraction, and attraction energy by combining the reversible clustering kinetics with an approximate hydrodynamic model. The fractal dimension df modulates the time evolution of cluster size, lag time and gelation time, and of the viscosity. The gelation transition is strongly nonequilibrium and time-dependent in the unstable region of the state diagram of colloids where the association rate is larger than the dissociation rate. Only upon approaching conditions where the initial association and the dissociation rates are comparable for all species (which is a condition for the detailed balance to be satisfied) aggregation can occur with df = 3. In this limit, homogeneous nucleation followed by Lifshitz-Slyozov coarsening is recovered. In this limited region of the state diagram the macroscopic gelation process is likely to be driven by large spontaneous fluctuations associated with spinodal decomposition.


Langmuir | 2010

Effect of temperature on high shear-induced gelation of charge-stabilized colloids without adding electrolytes.

Hua Wu; Aikaterini Tsoutsoura; Marco Lattuada; Alessio Zaccone; Massimo Morbidelli

We demonstrated previously (Wu, H.; Zaccone, A.; Tsoutsoura, A.; Lattuada, M.; Morbidelli, M. Langmuir 2009, 25, 4715) that, for a colloid stabilized by charges from both polymer chain-end groups and adsorbed sulfonate surfactants, when the surfactant surface density reaches a certain critical value, the shear-induced gelation becomes unachievable at room temperature, even at an extremely large Peclet number, Pe = 4.6 x 10(4). This is due to the presence of the short-range, repulsive hydration force generated by the adsorbed surfactant. In this work, we investigate how such hydration force affects the shear-induced gelation at higher temperatures, in the range between 303 and 338 K. It is found that a colloidal system, which does not gel at room temperature in a microchannel at a fixed Pe = 3.7 x 10(4), does gel when temperature increases to a certain value. The critical initial particle volume fraction for the gelation to occur decreases as temperature increases. These results indicate that the effect of the hydration force on the gelation decreases as temperature increases. Moreover, we have observed that at the criticality only part of the primary particles is converted to the gel network and the effective particle volume fraction forming the gel network does not change significantly with temperature. The effective particle volume fraction is also independent of the surfactant surface coverage. Since the effective particle volume fraction corresponds to space filling requirement of a standing gel network, which is mainly related to the clusters structure, this result indicates that at a given shear rate the cluster structure does not change significantly with the surfactant surface coverage. On the other hand, since the cluster morphology is a strong function of the shear rate, we have observed that when the Peclet number is lowered from Pe = 3.7 x 10(4) to 1.7 x 10(4), the effective particle volume fraction reduces from 0.19 to 0.12 at 313 K.

Collaboration


Dive into the Alessio Zaccone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rico Milkus

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Peter Schall

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bingyu Cui

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge