Alex A. R. Oliveira
Federal University of Pará
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alex A. R. Oliveira.
New Phytologist | 2010
Antonio Carlos Lola da Costa; David Galbraith; Samuel Almeida; Bruno Takeshi Tanaka Portela; Mauricio da Costa; João de Athaydes Silva Junior; Alan Pantoja Braga; Paulo H. L. Gonçalves; Alex A. R. Oliveira; Rosie A. Fisher; Oliver L. Phillips; Daniel B. Metcalfe; Peter E. Levy; Patrick Meir
*At least one climate model predicts severe reductions of rainfall over Amazonia during this century. Long-term throughfall exclusion (TFE) experiments represent the best available means to investigate the resilience of the Amazon rainforest to such droughts. *Results are presented from a 7 yr TFE study at Caxiuanã National Forest, eastern Amazonia. We focus on the impacts of the drought on tree mortality, wood production and above-ground biomass. *Tree mortality in the TFE plot over the experimental period was 2.5% yr(-1), compared with 1.25% yr(-1) in a nearby control plot experiencing normal rainfall. Differences in stem mortality between plots were greatest in the largest (> 40 cm diameter at breast height (dbh)) size class (4.1% yr(-1) in the TFE and 1.4% yr(-1) in the control). Wood production in the TFE plot was c. 30% lower than in the control plot. Together, these changes resulted in a loss of 37.8 +/- 2.0 Mg carbon (C) ha(-1) in the TFE plot (2002-2008), compared with no change in the control. *These results are remarkably consistent with those from another TFE (at Tapajós National Forest), suggesting that eastern Amazonian forests may respond to prolonged drought in a predictable manner.
Nature | 2015
Lucy Rowland; A. C. L. da Costa; David Galbraith; Rafael S. Oliveira; Oliver J. Binks; Alex A. R. Oliveira; A.M. Pullen; Christopher E. Doughty; Daniel B. Metcalfe; Steel Silva Vasconcelos; L. V. Ferreira; Yadvinder Malhi; John Grace; Maurizio Mencuccini; Patrick Meir
Drought threatens tropical rainforests over seasonal to decadal timescales, but the drivers of tree mortality following drought remain poorly understood. It has been suggested that reduced availability of non-structural carbohydrates (NSC) critically increases mortality risk through insufficient carbon supply to metabolism (‘carbon starvation’). However, little is known about how NSC stores are affected by drought, especially over the long term, and whether they are more important than hydraulic processes in determining drought-induced mortality. Using data from the world’s longest-running experimental drought study in tropical rainforest (in the Brazilian Amazon), we test whether carbon starvation or deterioration of the water-conducting pathways from soil to leaf trigger tree mortality. Biomass loss from mortality in the experimentally droughted forest increased substantially after >10 years of reduced soil moisture availability. The mortality signal was dominated by the death of large trees, which were at a much greater risk of hydraulic deterioration than smaller trees. However, we find no evidence that the droughted trees suffered carbon starvation, as their NSC concentrations were similar to those of non-droughted trees, and growth rates did not decline in either living or dying trees. Our results indicate that hydraulics, rather than carbon starvation, triggers tree death from drought in tropical rainforest.
Plant Ecology & Diversity | 2014
Christopher E. Doughty; Daniel B. Metcalfe; Mauricio da Costa; Alex A. R. Oliveira; G. F.C. Neto; João A. Silva; Luiz E. O. C. Aragão; Samuel Almeida; Carlos A. Quesada; Cécile A. J. Girardin; Kate Halladay; Anthonio C.L. da Costa; Yadvinder Malhi
Background: Terra preta do indio or ‘dark earth’ soils formed as a result of a long-term addition of organic matter by indigenous peoples in Amazonia. Aims: Here we report on the first study of productivity, allocation and carbon cycling from a terra preta plot in eastern Amazonia (Caxiuanã, Pará, Brazil), and contrast its dynamics with a nearby plot on infertile soil (ferralsols). Methods: We determined total net primary production (NPP) for fine roots, wood, and canopy and total autotrophic respiration (rhizosphere, wood, and canopy respiration) from two 1-ha plots on contrasting soils. Results: Both gross primary productivity (GPP) (35.68 ± 3.65 vs. 32.08 ± 3.46 Mg C ha−1 year−1) and carbon use efficiency (CUE) (0.44 ± 0.06 vs. 0.42 ± 0.05) were slightly higher at the terra preta plot. Total NPP (15.77 ± 1.13 Mg C ha−1 year−1 vs. 13.57 ± 0.60 Mg C ha−1 year−1) and rates of fine root production (6.41 ± 1.08 vs. 3.68 ± 0.52 Mg C ha−1 year−1) were also greater at the terra preta plot vs. the tower plot. Conclusions: Forests on terra preta soil fix slightly more carbon and allocate slightly more of that carbon towards growth than forests on the infertile plot, which leads to greater total NPP, which was disproportionately allocated to fine roots. However, since increased fine root NPP was partially offset by increased heterotrophic soil respiration, the increased root growth was unlikely to greatly enhance soil carbon stocks in terra preta soils.
Global Change Biology | 2015
Lucy Rowland; Raquel Lobo-do-Vale; Bradley Christoffersen; Eliane A. Melém; Bart Kruijt; Steel Silva Vasconcelos; Tomas F. Domingues; Oliver J. Binks; Alex A. R. Oliveira; Daniel B. Metcalfe; Antonio Carlos Lola da Costa; Maurizio Mencuccini; Patrick Meir
Abstract Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through‐fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought‐stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought‐induced mortality. We hypothesize that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short‐lived periods of high moisture availability, when stomatal conductance (g s) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (R d) was elevated in the TFE‐treated forest trees relative to the control by 28.2 ± 2.8% (mean ± one standard error). This mean R d value was dominated by a 48.5 ± 3.6% increase in the R d of drought‐sensitive taxa, and likely reflects the need for additional metabolic support required for stress‐related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity.
New Phytologist | 2016
Oliver J. Binks; Patrick Meir; Lucy Rowland; Antonio Carlos Lola da Costa; Steel Silva Vasconcelos; Alex A. R. Oliveira; Leandro V. Ferreira; Bradley Christoffersen; Andrea Nardini; Maurizio Mencuccini
Summary The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long‐term drought experiment in the Amazon rainforest to evaluate the role of leaf‐level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through‐fall exclusion) enabling a comparison between short‐ and long‐term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long‐term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought‐sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell‐level water relation traits can acclimate to long‐term water stress, and highlight the limitations of extrapolating the results of short‐term studies to temporal scales associated with climate change.
Global Change Biology | 2017
Thomas L. Powell; James K. Wheeler; Alex A. R. Oliveira; Antonio Carlos Lola da Costa; Scott R. Saleska; Patrick Meir; Paul R. Moorcroft
Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large-scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem-P50 ), leaf turgor loss point (TLP), cellular osmotic potential (πo ), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought-tolerant versus drought-intolerant based on observed mortality rates, and subdivided into early- versus late-successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem-P50 , TLP, and πo , but not ε, occurred at significantly higher water potentials for the drought-intolerant PFT compared to the drought-tolerant PFT; however, there were no significant differences between the early- and late-successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density-a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought-tolerant and drought-intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry-season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co-occuring drought-tolerant and drought-intolerant tropical tree species promises to facilitate a much-needed improvement in the representation of plant hydraulics within terrestrial ecosystem and biosphere models, which will enhance our ability to make robust predictions of how future changes in climate will affect tropical forests.
Tree Physiology | 2016
Oliver J. Binks; Patrick Meir; Lucy Rowland; Antonio Carlos Lola da Costa; Steel Silva Vasconcelos; Alex A. R. Oliveira; Leandro V. Ferreira; Maurizio Mencuccini
Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm3 cm−2, control: 1.77 ± 0.30 mm3 cm−2). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry season water availability.
Journal of Ecology | 2018
Lucy Rowland; Antonio Carlos Lola da Costa; Alex A. R. Oliveira; Samuel Almeida; Leandro V. Ferreira; Yadvinder Malhi; Daniel B. Metcalfe; Maurizio Mencuccini; John Grace; Patrick Meir
Litterfall dynamics in tropical forests are a good indicator of overall tropical forest function, indicative of carbon invested in both photosynthesising tissues and reproductive organs such as flowers and fruits. These dynamics are sensitive to changes in climate, such as drought, but little is known about the long-term responses of tropical forest litterfall dynamics to extended drought stress. We present a 15-year dataset of litterfall (leaf, flower and fruit, and twigs) from the worlds only long-running drought experiment in tropical forest. This dataset comprises one of the longest published litterfall time series in natural forest, which allows the long-term effects of drought on forest reproduction and canopy investment to be explored. Over the first 4 years of the experiment, the experimental soil moisture deficit created only a small decline in total litterfall and leaf fall (12% and 13%, respectively), but a very strong initial decline in reproductive litterfall (flowers and fruits) of 54%. This loss of flowering and fruiting was accompanied by a de-coupling of all litterfall patterns from seasonal climate variables. However, following >10 years of the experimental drought, flower and fruiting re-stabilised at levels greater than in the control plot, despite high tree mortality in the drought plot. Litterfall relationships with atmospheric drivers were re-established alongside a strong new apparent trade-off between litterfall and tree growth. Synthesis. We demonstrate that this tropical forest went through an initial shock response during the first 4 years of intense drought, where reproductive effort was arrested and seasonal litterfall patterns were lost. However, following >10 years of experimental drought, this system appears to be re-stabilising at a new functional state where reproduction is substantially elevated on a per tree basis; and there is a new strong trade-off between investment in canopy production and wood production. (Less)
New Phytologist | 2018
Lucy Rowland; Antonio Carlos Lola da Costa; Alex A. R. Oliveira; Rafael S. Oliveira; Paulo R. L. Bittencourt; Patrícia de Britto Costa; Andre L. Giles; Azul I. Sosa; Ingrid Coughlin; John L. Godlee; Steel Silva Vasconcelos; João de Athaydes Silva Junior; Leandro V. Ferreira; Maurizio Mencuccini; Patrick Meir
Summary CO 2 efflux from stems (CO 2_stem) accounts for a substantial fraction of tropical forest gross primary productivity, but the climate sensitivity of this flux remains poorly understood. We present a study of tropical forest CO 2_stem from 215 trees across wet and dry seasons, at the worlds longest running tropical forest drought experiment site. We show a 27% increase in wet season CO 2_stem in the droughted forest relative to a control forest. This was driven by increasing CO 2_stem in trees 10–40 cm diameter. Furthermore, we show that drought increases the proportion of maintenance to growth respiration in trees > 20 cm diameter, including large increases in maintenance respiration in the largest droughted trees, > 40 cm diameter. However, we found no clear taxonomic influence on CO 2_stem and were unable to accurately predict how drought sensitivity altered ecosystem scale CO 2_stem, due to substantial uncertainty introduced by contrasting methods previously employed to scale CO 2_stem fluxes. Our findings indicate that under future scenarios of elevated drought, increases in CO 2_stem may augment carbon losses, weakening or potentially reversing the tropical forest carbon sink. However, due to substantial uncertainties in scaling CO 2_stem fluxes, stand‐scale future estimates of changes in stem CO 2 emissions remain highly uncertain.
Ciência e Natura | 2013
Jabert Diniz Júnior; Antonio Carlos Lola da Costa; Manoel Roberval Pimentel Santos; Luiz Carlos Rabelo Vieira; Alex A. R. Oliveira; Leidiane Leão de Oliveira
O estudo teve como objetivo avaliar a influencia da vegetacao no comportamento termohigrometrico em tres pontos com diferentes percentuais de vegetacao, na cidade de Santarem-PA. Foram medidas a temperatura e a umidade relativa do ar, simultaneamente, em tres pracas da cidade, durante cinco dias. Os resultados indicaram que, na comparacao interpracas, a praca com o maior percentual de vegetacao apresentou valores medios de temperatura do ar menores, enquanto que os valores de umidade relativa do ar foram maiores nestes ambientes. Na comparacao intrapracas, os instrumentos a sombra da vegetacao registraram sempre os menores valores medios da temperatura do ar e os maiores da umidade relativa do ar. Estes resultados indicam que houve influencia da vegetacao no comportamento da temperatura e da umidade relativa do ar.