Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex Bateman is active.

Publication


Featured researches published by Alex Bateman.


Nucleic Acids Research | 2000

The Pfam protein families database

Marco Punta; Penny Coggill; Ruth Y. Eberhardt; Jaina Mistry; John G. Tate; Chris Boursnell; Kristoffer Forslund; Goran Ceric; Jody Clements; Andreas Heger; Liisa Holm; Erik L. L. Sonnhammer; Sean R. Eddy; Alex Bateman; Robert D. Finn

Pfam is a widely used database of protein families, currently containing more than 13 000 manually curated protein families as of release 26.0. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/). Here, we report on changes that have occurred since our 2010 NAR paper (release 24.0). Over the last 2 years, we have generated 1840 new families and increased coverage of the UniProt Knowledgebase (UniProtKB) to nearly 80%. Notably, we have taken the step of opening up the annotation of our families to the Wikipedia community, by linking Pfam families to relevant Wikipedia pages and encouraging the Pfam and Wikipedia communities to improve and expand those pages. We continue to improve the Pfam website and add new visualizations, such as the ‘sunburst’ representation of taxonomic distribution of families. In this work we additionally address two topics that will be of particular interest to the Pfam community. First, we explain the definition and use of family-specific, manually curated gathering thresholds. Second, we discuss some of the features of domains of unknown function (also known as DUFs), which constitute a rapidly growing class of families within Pfam.


Nucleic Acids Research | 2006

miRBase: microRNA sequences, targets and gene nomenclature

Sam Griffiths-Jones; Russell Grocock; Stijn van Dongen; Alex Bateman; Anton J. Enright

The miRBase database aims to provide integrated interfaces to comprehensive microRNA sequence data, annotation and predicted gene targets. miRBase takes over functionality from the microRNA Registry and fulfils three main roles: the miRBase Registry acts as an independent arbiter of microRNA gene nomenclature, assigning names prior to publication of novel miRNA sequences. miRBase Sequences is the primary online repository for miRNA sequence data and annotation. miRBase Targets is a comprehensive new database of predicted miRNA target genes. miRBase is available at .


Nucleic Acids Research | 2014

Pfam: the protein families database

Robert D. Finn; Alex Bateman; Jody Clements; Penelope Coggill; Ruth Y. Eberhardt; Sean R. Eddy; Andreas Heger; Kirstie Hetherington; Liisa Holm; Jaina Mistry; Erik L. L. Sonnhammer; John G. Tate; Marco Punta

Pfam, available via servers in the UK (http://pfam.sanger.ac.uk/) and the USA (http://pfam.janelia.org/), is a widely used database of protein families, containing 14 831 manually curated entries in the current release, version 27.0. Since the last update article 2 years ago, we have generated 1182 new families and maintained sequence coverage of the UniProt Knowledgebase (UniProtKB) at nearly 80%, despite a 50% increase in the size of the underlying sequence database. Since our 2012 article describing Pfam, we have also undertaken a comprehensive review of the features that are provided by Pfam over and above the basic family data. For each feature, we determined the relevance, computational burden, usage statistics and the functionality of the feature in a website context. As a consequence of this review, we have removed some features, enhanced others and developed new ones to meet the changing demands of computational biology. Here, we describe the changes to Pfam content. Notably, we now provide family alignments based on four different representative proteome sequence data sets and a new interactive DNA search interface. We also discuss the mapping between Pfam and known 3D structures.


Nature | 2002

Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)

Stephen D. Bentley; K. F. Chater; A.-M. Cerdeño-Tárraga; Gregory L. Challis; Nicholas R. Thomson; Keith D. James; David Harris; M. A. Quail; H. Kieser; D. Harper; Alex Bateman; S. Brown; G. Chandra; Carton W. Chen; Mark O. Collins; Ann Cronin; Audrey Fraser; Arlette Goble; J. Hidalgo; T. Hornsby; S. Howarth; Chih-Hung Huang; T. Kieser; L. Larke; Lee Murphy; K. Oliver; Susan O'Neil; Ester Rabbinowitsch; Marie-Adele Rajandream; Kim Rutherford

Streptomyces coelicolor is a representative of the group of soil-dwelling, filamentous bacteria responsible for producing most natural antibiotics used in human and veterinary medicine. Here we report the 8,667,507 base pair linear chromosome of this organism, containing the largest number of genes so far discovered in a bacterium. The 7,825 predicted genes include more than 20 clusters coding for known or predicted secondary metabolites. The genome contains an unprecedented proportion of regulatory genes, predominantly those likely to be involved in responses to external stimuli and stresses, and many duplicated gene sets that may represent ‘tissue-specific’ isoforms operating in different phases of colonial development, a unique situation for a bacterium. An ancient synteny was revealed between the central ‘core’ of the chromosome and the whole chromosome of pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. The genome sequence will greatly increase our understanding of microbial life in the soil as well as aiding the generation of new drug candidates by genetic engineering.


Nucleic Acids Research | 2006

Pfam: clans, web tools and services

Robert D. Finn; Jaina Mistry; Benjamin Schuster-Böckler; Sam Griffiths-Jones; Volker Hollich; Timo Lassmann; Simon Moxon; Mhairi Marshall; Ajay Khanna; Richard Durbin; Sean R. Eddy; Erik L. L. Sonnhammer; Alex Bateman

Pfam is a database of protein families that currently contains 7973 entries (release 18.0). A recent development in Pfam has enabled the grouping of related families into clans. Pfam clans are described in detail, together with the new associated web pages. Improvements to the range of Pfam web tools and the first set of Pfam web services that allow programmatic access to the database and associated tools are also presented. Pfam is available on the web in the UK (), the USA (), France () and Sweden ().


Nucleic Acids Research | 2016

The Pfam protein families database: towards a more sustainable future

Robert D. Finn; Penelope Coggill; Ruth Y. Eberhardt; Sean R. Eddy; Jaina Mistry; Alex L. Mitchell; Simon Potter; Marco Punta; Matloob Qureshi; Amaia Sangrador-Vegas; Gustavo A. Salazar; John G. Tate; Alex Bateman

In the last two years the Pfam database (http://pfam.xfam.org) has undergone a substantial reorganisation to reduce the effort involved in making a release, thereby permitting more frequent releases. Arguably the most significant of these changes is that Pfam is now primarily based on the UniProtKB reference proteomes, with the counts of matched sequences and species reported on the website restricted to this smaller set. Building families on reference proteomes sequences brings greater stability, which decreases the amount of manual curation required to maintain them. It also reduces the number of sequences displayed on the website, whilst still providing access to many important model organisms. Matches to the full UniProtKB database are, however, still available and Pfam annotations for individual UniProtKB sequences can still be retrieved. Some Pfam entries (1.6%) which have no matches to reference proteomes remain; we are working with UniProt to see if sequences from them can be incorporated into reference proteomes. Pfam-B, the automatically-generated supplement to Pfam, has been removed. The current release (Pfam 29.0) includes 16 295 entries and 559 clans. The facility to view the relationship between families within a clan has been improved by the introduction of a new tool.


Nucleic Acids Research | 2009

InterPro: the integrative protein signature database

Sarah Hunter; Rolf Apweiler; Teresa K. Attwood; Amos Marc Bairoch; Alex Bateman; David Binns; Peer Bork; Ujjwal Das; Louise Daugherty; Lauranne Duquenne; Robert D. Finn; Julian Gough; Daniel H. Haft; Nicolas Hulo; Daniel Kahn; Elizabeth Kelly; Aurélie Laugraud; Ivica Letunic; David M. Lonsdale; Rodrigo Lopez; John Maslen; Craig McAnulla; Jennifer McDowall; Jaina Mistry; Alex L. Mitchell; Nicola Mulder; Darren A. Natale; Christine A. Orengo; Antony F. Quinn; Jeremy D. Selengut

The InterPro database (http://www.ebi.ac.uk/interpro/) integrates together predictive models or ‘signatures’ representing protein domains, families and functional sites from multiple, diverse source databases: Gene3D, PANTHER, Pfam, PIRSF, PRINTS, ProDom, PROSITE, SMART, SUPERFAMILY and TIGRFAMs. Integration is performed manually and approximately half of the total ∼58 000 signatures available in the source databases belong to an InterPro entry. Recently, we have started to also display the remaining un-integrated signatures via our web interface. Other developments include the provision of non-signature data, such as structural data, in new XML files on our FTP site, as well as the inclusion of matchless UniProtKB proteins in the existing match XML files. The web interface has been extended and now links out to the ADAN predicted protein–protein interaction database and the SPICE and Dasty viewers. The latest public release (v18.0) covers 79.8% of UniProtKB (v14.1) and consists of 16 549 entries. InterPro data may be accessed either via the web address above, via web services, by downloading files by anonymous FTP or by using the InterProScan search software (http://www.ebi.ac.uk/Tools/InterProScan/).


Nucleic Acids Research | 2004

Rfam: annotating non-coding RNAs in complete genomes

Sam Griffiths-Jones; Simon Moxon; Mhairi Marshall; Ajay Khanna; Sean R. Eddy; Alex Bateman

Rfam is a comprehensive collection of non-coding RNA (ncRNA) families, represented by multiple sequence alignments and profile stochastic context-free grammars. Rfam aims to facilitate the identification and classification of new members of known sequence families, and distributes annotation of ncRNAs in over 200 complete genome sequences. The data provide the first glimpses of conservation of multiple ncRNA families across a wide taxonomic range. A small number of large families are essential in all three kingdoms of life, with large numbers of smaller families specific to certain taxa. Recent improvements in the database are discussed, together with challenges for the future. Rfam is available on the Web at http://www.sanger.ac.uk/Software/Rfam/ and http://rfam.wustl.edu/.


Nucleic Acids Research | 2012

MEROPS: the database of proteolytic enzymes, their substrates and inhibitors

Neil D. Rawlings; Alan J. Barrett; Alex Bateman

Peptidases, their substrates and inhibitors are of great relevance to biology, medicine and biotechnology. The MEROPS database (http://merops.sanger.ac.uk) aims to fulfil the need for an integrated source of information about these. The database has hierarchical classifications in which homologous sets of peptidases and protein inhibitors are grouped into protein species, which are grouped into families, which are in turn grouped into clans. The database has been expanded to include proteolytic enzymes other than peptidases. Special identifiers for peptidases from a variety of model organisms have been established so that orthologues can be detected in other species. A table of predicted active-site residue and metal ligand positions and the residue ranges of the peptidase domains in orthologues has been added to each peptidase summary. New displays of tertiary structures, which can be rotated or have the surfaces displayed, have been added to the structure pages. New indexes for gene names and peptidase substrates have been made available. Among the enhancements to existing features are the inclusion of small-molecule inhibitors in the tables of peptidase–inhibitor interactions, a table of known cleavage sites for each protein substrate, and tables showing the substrate-binding preferences of peptidases derived from combinatorial peptide substrate libraries.


Nucleic Acids Research | 2003

Rfam: an RNA family database

Sam Griffiths-Jones; Alex Bateman; Mhairi Marshall; Ajay Khanna; Sean R. Eddy

Rfam is a collection of multiple sequence alignments and covariance models representing non-coding RNA families. Rfam is available on the web in the UK at http://www.sanger.ac.uk/Software/Rfam/ and in the US at http://rfam.wustl.edu/. These websites allow the user to search a query sequence against a library of covariance models, and view multiple sequence alignments and family annotation. The database can also be downloaded in flatfile form and searched locally using the INFERNAL package (http://infernal.wustl.edu/). The first release of Rfam (1.0) contains 25 families, which annotate over 50 000 non-coding RNA genes in the taxonomic divisions of the EMBL nucleotide database.

Collaboration


Dive into the Alex Bateman's collaboration.

Top Co-Authors

Avatar

Robert D. Finn

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Sean R. Eddy

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Richard Durbin

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Neil D. Rawlings

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amos Marc Bairoch

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Jaina Mistry

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Rolf Apweiler

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge