Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex Best is active.

Publication


Featured researches published by Alex Best.


Philosophical Transactions of the Royal Society B | 2009

The role of ecological feedbacks in the evolution of host defence: what does theory tell us?

Mike Boots; Alex Best; Martin R. Miller; Andrew White

Hosts have evolved a diverse range of defence mechanisms in response to challenge by infectious organisms (parasites and pathogens). Whether defence is through avoidance of infection, control of the growth of the parasite once infected, clearance of the infection, tolerance to the disease caused by infection or innate and/or acquired immunity, it will have important implications for the population ecology (epidemiology) of the host–parasite interaction. As a consequence, it is important to understand the evolutionary dynamics of defence in the light of the ecological feedbacks that are intrinsic to the interaction. Here, we review the theoretical models that examine how these feedbacks influence the nature and extent of the defence that will evolve. We begin by briefly comparing different evolutionary modelling approaches and discuss in detail the modern game theoretical approach (adaptive dynamics) that allows ecological feedbacks to be taken into account. Next, we discuss a number of models of host defence in detail and, in particular, make a distinction between ‘resistance’ and ‘tolerance’. Finally, we discuss coevolutionary models and the potential use of models that include genetic and game theoretical approaches. Our aim is to review theoretical approaches that investigate the evolution of defence and to explain how the type of defence and the costs associated with its acquisition are important in determining the level of defence that evolves.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Maintenance of host variation in tolerance to pathogens and parasites

Alex Best; Andrew White; Mike Boots

Tolerance and resistance provide hosts with two distinct defense strategies against parasitism. In resistance the hosts “fight” the parasite directly, whereas in tolerance the hosts fight the disease by ameliorating the damage that infection causes. There is increasing recognition that the two mechanisms may exhibit very different evolutionary behaviors. Although empirical work has often noted considerable variance in tolerance within hosts, theory has predicted the fixation of tolerance due to positive frequency dependence through a feedback with disease prevalence. Here we reconcile these findings through a series of dynamic game theoretical models. We emphasize that there is a crucial distinction between tolerance to the effects of disease-induced mortality and tolerance to the effect of the disease-induced reductions in fecundity. Only mortality tolerance has a positive effect on parasite fitness, whereas sterility tolerance is neutral and may therefore result in polymorphisms. The nature of the costs to defense and their relationship to trade-offs between resistance and tolerance are crucial in determining the likelihood of variation, whereas the co-evolution of the parasite will not affect diversity. Our findings stress that it is important to measure the effects of different mechanisms on characteristics that affect the epidemiology of the parasite to completely understand the evolutionary dynamics of defense.


The American Naturalist | 2011

Epidemiological, Evolutionary, and Coevolutionary Implications of Context-Dependent Parasitism

Pedro F. Vale; Alastair J. Wilson; Alex Best; Mike Boots; Tom J. Little

Victims of infection are expected to suffer increasingly as parasite population growth increases. Yet, under some conditions, faster-growing parasites do not appear to cause more damage, and infections can be quite tolerable. We studied these conditions by assessing how the relationship between parasite population growth and host health is sensitive to environmental variation. In experimental infections of the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we show how easily an interaction can shift from a severe interaction, that is, when host fitness declines substantially with each unit of parasite growth, to a tolerable relationship by changing only simple environmental variables: temperature and food availability. We explored the evolutionary and epidemiological implications of such a shift by modeling pathogen evolution and disease spread under different levels of infection severity and found that environmental shifts that promote tolerance ultimately result in populations harboring more parasitized individuals. We also find that the opportunity for selection, as indicated by the variance around traits, varied considerably with the environmental treatment. Thus, our results suggest two mechanisms that could underlie coevolutionary hotspots and coldspots: spatial variation in tolerance and spatial variation in the opportunity for selection.


The American Naturalist | 2009

The Implications of Coevolutionary Dynamics to Host‐Parasite Interactions

Alex Best; Andrew White; Mike Boots

Due to the importance of infectious disease, there is a large body of theory on the evolution of either hosts or, more commonly, parasites. Here we present a fully coevolutionary model of a host‐parasite system that includes ecological dynamics that feed back into the coevolutionary outcome, and we show that highly virulent parasites may evolve due to the coevolutionary process. Parasite evolution is very sensitive to evolution in the host, and virulence fluctuates substantially when mutation rates vary between host and parasite. Evolutionary branching in the host leads to parasites increasing their virulence, and small changes in host resistance drive large changes in parasite virulence. Evolutionary branching in one species does not cause branching in the other. Our work emphasizes the importance of considering coevolutionary dynamics and shows that certain highly virulent parasites may result from responses to host evolution.


The American Naturalist | 2010

The Evolution of Host‐Parasite Range

Alex Best; Ann White; Éva Kisdi; Janis Antonovics; Michael A. Brockhurst; Mike Boots

Understanding the coevolution of hosts and parasites is one of the key challenges for evolutionary biology. In particular, it is important to understand the processes that generate and maintain variation. Here, we examine a coevolutionary model of hosts and parasites where infection does not depend on absolute rates of transmission and defense but is approximately all‐or‐nothing, depending on the relative levels of defense and infectivity of the host and the parasite. We show that considerable diversity can be generated and maintained because of epidemiological feedbacks, with strains differing in the range of host and parasite types they can respectively infect or resist. Parasites with broad and narrow ranges therefore coexist, as do broadly and narrowly resistant hosts, but this diversity occurs without the assumption of highly specific gene interactions. In contrast to gene‐for‐gene models, cycling in strain types is found only under a restrictive set of circumstances. The generation of diversity in both hosts and parasites is dependent on the shape of the trade‐off relationships but is more likely in long‐lived hosts and chronic disease with long infectious periods. Overall, our model shows that significant diversity in infectivity and resistance range can evolve and be maintained from initially monomorphic populations.


Proceedings of the Royal Society of London B: Biological Sciences | 2011

Host resistance and coevolution in spatially structured populations

Alex Best; Steve Webb; Andrew White; Mike Boots

Natural, agricultural and human populations are structured, with a proportion of interactions occurring locally or within social groups rather than at random. This within-population spatial and social structure is important to the evolution of parasites but little attention has been paid to how spatial structure affects the evolution of host resistance, and as a consequence the coevolutionary outcome. We examine the evolution of resistance across a range of mixing patterns using an approximate mathematical model and stochastic simulations. As reproduction becomes increasingly local, hosts are always selected to increase resistance. More localized transmission also selects for higher resistance, but only if reproduction is also predominantly local. If the hosts disperse, lower resistance evolves as transmission becomes more local. These effects can be understood as a combination of genetic (kin) and ecological structuring on individual fitness. When hosts and parasites coevolve, local interactions select for hosts with high defence and parasites with low transmissibility and virulence. Crucially, this means that more population mixing may lead to the evolution of both fast-transmitting highly virulent parasites and reduced resistance in the host.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

The epidemiological consequences of immune priming

Hannah J. Tidbury; Alex Best; Mike Boots

Exposure to low doses of pathogens that do not result in the host becoming infectious may ‘prime’ the immune response and increase protection to subsequent challenge. There is increasing evidence that such immune priming is a widespread and important feature of invertebrate host–pathogen interactions. Immune priming clearly has implications for individual hosts but will also have population-level implications. We present a susceptible–primed–infectious model—in contrast to the classic susceptible–infectious–recovered framework—to investigate the impacts of immune priming on pathogen persistence and population stability. We describe impacts of immune priming on the epidemiology of the disease in both constant and seasonal environments. A key result is that immune priming may act to destabilize population dynamics. In particular, when the proportion of individuals becoming primed rather than infected is high, but this priming does not confer full immunity, the population may be strongly destabilized through the generation of limit cycles. We discuss the implications of our model both in the context of invertebrate immunity and more widely.


Evolution | 2010

RESISTANCE IS FUTILE BUT TOLERANCE CAN EXPLAIN WHY PARASITES DO NOT ALWAYS CASTRATE THEIR HOSTS

Alex Best; Andrew White; Mike Boots

The disease caused by parasites and pathogens often causes sublethal effects that reduce host fecundity. Theory suggests that if parasites can “target” the detrimental effects of their growth on either host mortality or fecundity, they should always fully sterilize. This is because a reduction in host fecundity does not reduce the infectious period and is therefore neutral to a horizontally transmitted infectious organism. However, in nature fully castrating parasites are relatively rare, no doubt in part because of defense mechanisms in the host. Here, we examine in detail the evolution of host defense to the sterilizing effects of parasites and show that intermediate levels of sterility tolerance are found to evolve for a wide range of cost structures. Our key result arises when the host and parasite coevolve. Investment in tolerance by the host may prevent castration, but if host defense is through resistance (by controlling the parasites growth rate) coevolution by the parasite results in the complete loss of infected host fecundity. Resistance is therefore a waste of resources, but tolerance can explain why parasites do not castrate their hosts. Our results further emphasize the importance of tolerance as opposed to resistance to parasites.


Ecology Letters | 2014

Higher resources decrease fluctuating selection during host–parasite coevolution

Laura Lopez Pascua; Alex R. Hall; Alex Best; Andrew D. Morgan; Mike Boots; Angus Buckling

We still know very little about how the environment influences coevolutionary dynamics. Here, we investigated both theoretically and empirically how nutrient availability affects the relative extent of escalation of resistance and infectivity (arms race dynamic; ARD) and fluctuating selection (fluctuating selection dynamic; FSD) in experimentally coevolving populations of bacteria and viruses. By comparing interactions between clones of bacteria and viruses both within- and between-time points, we show that increasing nutrient availability resulted in coevolution shifting from FSD, with fluctuations in average infectivity and resistance ranges over time, to ARD. Our model shows that range fluctuations with lower nutrient availability can be explained both by elevated costs of resistance (a direct effect of nutrient availability), and reduced benefits of resistance when population sizes of hosts and parasites are lower (an indirect effect). Nutrient availability can therefore predictably and generally affect qualitative coevolutionary dynamics by both direct and indirect (mediated through ecological feedbacks) effects on costs of resistance.


Journal of the Royal Society Interface | 2012

The evolutionary dynamics of within-generation immune priming in invertebrate hosts.

Alex Best; Hannah J. Tidbury; Andrew White; Mike Boots

While invertebrates lack the machinery necessary for ‘acquired immunity’, there is increasing empirical evidence that exposure to low levels of disease may ‘prime’ an invertebrates immune response, increasing its defence to subsequent exposure. Despite this increasing empirical data, there has been little theoretical attention paid to immune priming. Here, we investigate the evolution of immune priming, focusing on the role of the unique feedbacks generated by a newly developed susceptible–primed–infected epidemiological model. Contrasting our results with previous models on the evolution of acquired immunity, we highlight that there are important implications to the evolution of immunity through priming owing to these different epidemiological feedbacks. In particular, we find that in contrast to acquired immunity, priming is strongly selected for at high as well as intermediate pathogen virulence. We also find that priming may be greatest at either intermediate or high host lifespans depending on the severity of disease. Furthermore, hosts faced with more severe pathogens are more likely to evolve diversity in priming. Finally, we show when the evolution of priming leads to the exclusion of the pathogens or hosts experiencing population cycles. Overall the model acts as a baseline for understanding the evolution of priming in host–pathogen systems.

Collaboration


Dive into the Alex Best's collaboration.

Top Co-Authors

Avatar

Mike Boots

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steve Webb

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge