Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex Cable is active.

Publication


Featured researches published by Alex Cable.


Optics Letters | 2008

Speckle variance detection of microvasculature using swept-source optical coherence tomography

Adrian Mariampillai; Beau A. Standish; Eduardo H. Moriyama; Mamta Khurana; Nigel R. Munce; Michael K. K. Leung; James Jiang; Alex Cable; Brian C. Wilson; I. Alex Vitkin; Victor X. D. Yang

We report on imaging of microcirculation by calculating the speckle variance of optical coherence tomography (OCT) structural images acquired using a Fourier domain mode-locked swept-wavelength laser. The algorithm calculates interframe speckle variance in two-dimensional and three-dimensional OCT data sets and shows little dependence to the Doppler angle ranging from 75 degrees to 90 degrees . We demonstrate in vivo detection of blood flow in vessels as small as 25 microm in diameter in a dorsal skinfold window chamber model with direct comparison with intravital fluorescence confocal microscopy. This technique can visualize vessel-size-dependent vascular shutdown and transient vascular occlusion during Visudyne photodynamic therapy and may provide opportunities for studying therapeutic effects of antivascular treatments without on exogenous contrast agent.


Optics Express | 2008

Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second

Benjamin Potsaid; Iwona Gorczynska; Vivek J. Srinivasan; Y. Chen; James Jiang; Alex Cable; James G. Fujimoto

We demonstrate ultrahigh speed spectral / Fourier domain optical coherence tomography (OCT) using an ultrahigh speed CMOS line scan camera at rates of 70,000 - 312,500 axial scans per second. Several design configurations are characterized to illustrate trade-offs between acquisition speed, resolution, imaging range, sensitivity and sensitivity roll-off performance. Ultrahigh resolution OCT with 2.5 - 3.0 micron axial image resolution is demonstrated at approximately 100,000 axial scans per second. A high resolution spectrometer design improves sensitivity roll-off and imaging range performance, trading off imaging speed to 70,000 axial scans per second. Ultrahigh speed imaging at >300,000 axial scans per second with standard image resolution is also demonstrated. Ophthalmic OCT imaging of the normal human retina is investigated. The high acquisition speeds enable dense raster scanning to acquire densely sampled volumetric three dimensional OCT (3D-OCT) data sets of the macula and optic disc with minimal motion artifacts. Imaging with approximately 8 - 9 micron axial resolution at 250,000 axial scans per second, a 512 x 512 x 400 voxel volumetric 3D-OCT data set can be acquired in only approximately 1.3 seconds. Orthogonal registration scans are used to register OCT raster scans and remove residual axial eye motion, resulting in 3D-OCT data sets which preserve retinal topography. Rapid repetitive imaging over small volumes can visualize small retinal features without motion induced distortions and enables volume registration to remove eye motion. Cone photoreceptors in some regions of the retina can be visualized without adaptive optics or active eye tracking. Rapid repetitive imaging of 3D volumes also provides dynamic volumetric information (4D-OCT) which is shown to enhance visualization of retinal capillaries and should enable functional imaging. Improvements in the speed and performance of 3D-OCT volumetric imaging promise to enable earlier diagnosis and improved monitoring of disease progression and response to therapy in ophthalmology, as well as have a wide range of research and clinical applications in other areas.


Optics Express | 2010

Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second

Benjamin Potsaid; Bernhard Baumann; David Huang; Scott Barry; Alex Cable; Joel S. Schuman; Jay S. Duker; James G. Fujimoto

We demonstrate ultrahigh speed swept source/Fourier domain ophthalmic OCT imaging using a short cavity swept laser at 100,000 - 400,000 axial scan rates. Several design configurations illustrate tradeoffs in imaging speed, sensitivity, axial resolution, and imaging depth. Variable rate A/D optical clocking is used to acquire linear-in-k OCT fringe data at 100 kHz axial scan rate with 5.3 um axial resolution in tissue. Fixed rate sampling at 1 GSPS achieves a 7.5mm imaging range in tissue with 6.0 um axial resolution at 100 kHz axial scan rate. A 200 kHz axial scan rate with 5.3 um axial resolution over 4mm imaging range is achieved by buffering the laser sweep. Dual spot OCT using two parallel interferometers achieves 400 kHz axial scan rate, almost 2X faster than previous 1050 nm ophthalmic results and 20X faster than current commercial instruments. Superior sensitivity roll-off performance is shown. Imaging is demonstrated in the human retina and anterior segment. Wide field 12x12 mm data sets include the macula and optic nerve head. Small area, high density imaging shows individual cone photoreceptors. The 7.5 mm imaging range configuration can show the cornea, iris, and anterior lens in a single image. These improvements in imaging speed and depth range provide important advantages for ophthalmic imaging. The ability to rapidly acquire 3D-OCT data over a wide field of view promises to simplify examination protocols. The ability to image fine structures can provide detailed information on focal pathologies. The large imaging range and improved image penetration at 1050 m wavelengths promises to improve performance for instrumentation which images both the retina and anterior eye. These advantages suggest that swept source OCT at 1050 nm wavelengths will play an important role in future ophthalmic instrumentation.


Optics Express | 2005

Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm.

Robert Huber; Maciej Wojtkowski; James G. Fujimoto; James Jiang; Alex Cable

We demonstrate high resolution, three-dimensional OCT imaging with a high speed, frequency swept 1300 nm laser source. A new external cavity semiconductor laser design, optimized for application to swept source OCT, is discussed. The design of the laser enables adjustment of an internal spectral filter to change the filter bandwidth and provides a robust bulk optics design. The laser generates ~30 mW instantaneous peak power at an effective 16 kHz sweep rate with a tuning range of ~133 nm full width. In frequency domain reflectometry and OCT applications, 109 dB sensitivity and ~10 microm axial resolution in tissue can be achieved with the swept laser. The high imaging speeds enable three-dimensional OCT imaging, including zone focusing or C-mode imaging and image fusion to acquire large depth of field data sets with high resolution. In addition, three-dimensional OCT data provides coherence gated en face images similar to optical coherence microscopy (OCM) and also enables the generation of images similar to confocal microscopy by summing signals in the axial direction. High speed, three-dimensional OCT imaging can provide comprehensive data which combines the advantages of optical coherence tomography and microscopy in a single system.


Biomedical Optics Express | 2012

Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers

Ireneusz Grulkowski; Jonathan J. Liu; Benjamin Potsaid; Vijaysekhar Jayaraman; Chen D. Lu; James Jiang; Alex Cable; Jay S. Duker; James G. Fujimoto

We demonstrate swept source OCT utilizing vertical-cavity surface emitting laser (VCSEL) technology for in vivo high speed retinal, anterior segment and full eye imaging. The MEMS tunable VCSEL enables long coherence length, adjustable spectral sweep range and adjustable high sweeping rate (50–580 kHz axial scan rate). These features enable integration of multiple ophthalmic applications into one instrument. The operating modes of the device include: ultrahigh speed, high resolution retinal imaging (up to 580 kHz); high speed, long depth range anterior segment imaging (100 kHz) and ultralong range full eye imaging (50 kHz). High speed imaging enables wide-field retinal scanning, while increased light penetration at 1060 nm enables visualization of choroidal vasculature. Comprehensive volumetric data sets of the anterior segment from the cornea to posterior crystalline lens surface are also shown. The adjustable VCSEL sweep range and rate make it possible to achieve an extremely long imaging depth range of ~50 mm, and to demonstrate the first in vivo 3D OCT imaging spanning the entire eye for non-contact measurement of intraocular distances including axial eye length. Swept source OCT with VCSEL technology may be attractive for next generation integrated ophthalmic OCT instruments.


Biomedical Optics Express | 2011

Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT.

Bernhard Baumann; Benjamin Potsaid; Martin F. Kraus; Jonathan J. Liu; David Huang; Joachim Hornegger; Alex Cable; Jay S. Duker; James G. Fujimoto

Doppler OCT provides depth-resolved information on flow in biological tissues. In this article, we demonstrate ultrahigh speed swept source/Fourier domain OCT for visualization and quantitative assessment of retinal blood flow. Using swept laser technology, the system operated in the 1050-nm wavelength range at a high axial scan rate of 200 kHz. The rapid imaging speed not only enables volumetric imaging with high axial scan densities, but also enables measurement of high flow velocities in the central retinal vessels. Deep penetration in the optic nerve and lamina cribrosa was achieved by imaging at 1-µm wavelengths. By analyzing en-face images extracted from 3D Doppler data sets, absolute flow in single vessels as well as total retinal blood flow was measured using a simple and robust protocol that does not require measurement of Doppler angles. The results from measurements in healthy eyes suggest that ultrahigh speed swept source/Fourier domain OCT could be a promising technique for volumetric imaging of retinal vasculature and quantitation of retinal blood flow in a wide range of retinal diseases.


PLOS ONE | 2013

Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography

WooJhon Choi; Kathrin J. Mohler; Benjamin Potsaid; Chen D. Lu; Jonathan J. Liu; Vijaysekhar Jayaraman; Alex Cable; Jay S. Duker; Robert Huber; James G. Fujimoto

We demonstrate in vivo choriocapillaris and choroidal microvasculature imaging in normal human subjects using optical coherence tomography (OCT). An ultrahigh speed swept source OCT prototype at 1060 nm wavelengths with a 400 kHz A-scan rate is developed for three-dimensional ultrahigh speed imaging of the posterior eye. OCT angiography is used to image three-dimensional vascular structure without the need for exogenous fluorophores by detecting erythrocyte motion contrast between OCT intensity cross-sectional images acquired rapidly and repeatedly from the same location on the retina. En face OCT angiograms of the choriocapillaris and choroidal vasculature are visualized by acquiring cross-sectional OCT angiograms volumetrically via raster scanning and segmenting the three-dimensional angiographic data at multiple depths below the retinal pigment epithelium (RPE). Fine microvasculature of the choriocapillaris, as well as tightly packed networks of feeding arterioles and draining venules, can be visualized at different en face depths. Panoramic ultra-wide field stitched OCT angiograms of the choriocapillaris spanning ∼32 mm on the retina show distinct vascular structures at different fundus locations. Isolated smaller fields at the central fovea and ∼6 mm nasal to the fovea at the depths of the choriocapillaris and Sattlers layer show vasculature structures consistent with established architectural morphology from histological and electron micrograph corrosion casting studies. Choriocapillaris imaging was performed in eight healthy volunteers with OCT angiograms successfully acquired from all subjects. These results demonstrate the feasibility of ultrahigh speed OCT for in vivo dye-free choriocapillaris and choroidal vasculature imaging, in addition to conventional structural imaging.


Optics Letters | 2010

Rapid volumetric angiography of cortical microvasculature with optical coherence tomography

Vivek J. Srinivasan; James Jiang; Mohammed A. Yaseen; Harsha Radhakrishnan; Weicheng Wu; Scott Barry; Alex Cable; David A. Boas

We describe methods and algorithms for rapid volumetric imaging of cortical vasculature with optical coherence tomography (OCT). By optimizing system design, scanning protocols, and algorithms for visualization of capillary flow, comprehensive imaging of the surface pial vasculature and capillary bed is performed in approximately 12 s. By imaging during hypercapnia and comparing with simultaneous CCD imaging, the sources of contrast of OCT angiography are investigated.


Optics Letters | 2007

High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm

Vivek J. Srinivasan; Robert Huber; Iwona Gorczynska; James G. Fujimoto; James Jiang; P. Reisen; Alex Cable

High-speed, high-resolution optical coherence tomography (OCT) imaging of the human retina is demonstrated using a frequency-swept laser at 850 nm. A compact external cavity semiconductor laser design, optimized for swept-source ophthalmic OCT, is described. The laser enables an effective 16 kHz sweep rate with >10 mm coherence length and a tuning range of approximately 35 nm full width at half-maximum, yielding an axial resolution of <7 micro m in tissue.


Optics Express | 2007

Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system

Adrian Mariampillai; Beau A. Standish; Nigel R. Munce; Cristina Randall; George Liu; James Jiang; Alex Cable; I. A. Vitkin; Victor X. D. Yang

We report a Doppler optical cardiogram gating technique for increasing the effective frame rate of Doppler optical coherence tomography (DOCT) when imaging periodic motion as found in the cardiovascular system of embryos. This was accomplished with a Thorlabs swept-source DOCT system that simultaneously acquired and displayed structural and Doppler images at 12 frames per second (fps). The gating technique allowed for ultra-high speed visualization of the blood flow pattern in the developing hearts of African clawed frog embryos (Xenopus laevis) at up to 1000 fps. In addition, four-dimensional (three spatial dimensions + temporal) Doppler imaging at 45 fps was demonstrated using this gating technique, producing detailed visualization of the complex cardiac motion and hemodynamics in a beating heart.

Collaboration


Dive into the Alex Cable's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Potsaid

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

James G. Fujimoto

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Vijaysekhar Jayaraman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jonathan J. Liu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joachim Hornegger

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Ireneusz Grulkowski

Nicolaus Copernicus University in Toruń

View shared research outputs
Researchain Logo
Decentralizing Knowledge