Alex Cazes
Curie Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alex Cazes.
Oncogene | 2011
P Mazot; Alex Cazes; M C Boutterin; A Figueiredo; Raynal; Combaret; Bengt Hallberg; Ruth H. Palmer; Olivier Delattre; Isabelle Janoueix-Lerosey; Marc Vigny
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK), which is transiently expressed during development of the central and peripheral nervous system. ALK has been recently identified as a major neuroblastoma predisposition gene and activating mutations have also been identified in a subset of sporadic neuroblastoma tumors. Two hot spots of ALK mutations have been observed at positions F1174 and R1275. Here, we studied stably transfected cell lines expressing wild-type or F1174L- or R1275Q-mutated ALK in parallel with a neuroblastoma cell line (CLB-GE) in which the allele mutated at position F1174 is amplified. We observed that the mutated ALK variants were essentially intracellular and were largely retained in the reticulum/Golgi compartments. This localization was corroborated by a defect of N-linked glycosylation. Although the mutated receptors exhibited a constitutive activation, the minor pool of receptor addressed to the plasma membrane was much more tyrosine phosphorylated than the intracellular pool. The use of antagonist monoclonal antibodies suggested that the constitutive activity of the mutated receptors did not require the dimerization of the receptor, whereas adequate dimerization triggered by agonist monoclonal antibodies increased this activity. Finally, kinase inactivation of the mutated receptors restored maturation and cell-surface localization. Our results show that constitutive activation of ALK results in its impaired maturation and intracellular retention. Furthermore, they provide a rationale for the potential use of kinase inhibitors and antibodies in ALK-dependent tumors.
Cancer Research | 2013
Alex Cazes; Caroline Louis-Brennetot; Pierre Mazot; Florent Dingli; Bérangère Lombard; Valentina Boeva; Romain Daveau; Julie Cappo; Valérie Combaret; Gudrun Schleiermacher; Stéphanie Jouannet; Sandrine Ferrand; Gaëlle Pierron; Emmanuel Barillot; Damarys Loew; Marc Vigny; Olivier Delattre; Isabelle Janoueix-Lerosey
Activating mutations of the ALK gene have been identified in sporadic and familial cases of neuroblastoma (NB), a cancer of the peripheral nervous system, and are thought to be the primary mechanism of oncogenic activation of this receptor in this pediatric neoplasm. To address the possibility that ALK activation may occur through genomic rearrangements as detected in other cancers, we first took advantage of high-resolution array-comparative genomic hybridization to search for ALK rearrangements in NB samples. Using complementary experiments by capture/paired-end sequencing and FISH experiments, various types of rearrangements were fully characterized, including partial gains or amplifications, in several NB cell lines and primary tumors. In the CLB-Bar cell line, we described a genomic rearrangement associated with an amplification of the ALK locus, leading to the expression of a 170 kDa protein lacking part of the extracellular domain encoded by exons 4 to 11, named ALK(Δ4-11). Analysis of genomic DNA from the tumor at diagnosis and relapse revealed that the ALK gene was amplified at diagnosis but that the rearranged ALK allele was observed at the relapse stage only, suggesting that it may be implicated in tumor aggressiveness. Consistently, oncogenic and tumorigenic properties of the ALK(Δ4-11) variant were shown after stable expression in NIH3T3 cells. Moreover, we documented an increased constitutive kinase activity of this variant, as well as an impaired maturation and retention into intracellular compartments. These results indicate that genomic rearrangements constitute an alternative mechanism to ALK point mutations resulting in receptor activation.
PLOS ONE | 2013
Valentina Boeva; Stéphanie Jouannet; Romain Daveau; Valérie Combaret; Cécile Pierre-Eugène; Alex Cazes; Caroline Louis-Brennetot; Gudrun Schleiermacher; Sandrine Ferrand; Gaëlle Pierron; Alban Lermine; Thomas Rio Frio; Virginie Raynal; Gilles Vassal; Emmanuel Barillot; Olivier Delattre; Isabelle Janoueix-Lerosey
Neuroblastoma is a pediatric cancer of the peripheral nervous system in which structural chromosome aberrations are emblematic of aggressive tumors. In this study, we performed an in-depth analysis of somatic rearrangements in two neuroblastoma cell lines and two primary tumors using paired-end sequencing of mate-pair libraries and RNA-seq. The cell lines presented with typical genetic alterations of neuroblastoma and the two tumors belong to the group of neuroblastoma exhibiting a profile of chromothripsis. Inter and intra-chromosomal rearrangements were identified in the four samples, allowing in particular characterization of unbalanced translocations at high resolution. Using complementary experiments, we further characterized 51 rearrangements at the base pair resolution that revealed 59 DNA junctions. In a subset of cases, complex rearrangements were observed with templated insertion of fragments of nearby sequences. Although we did not identify known particular motifs in the local environment of the breakpoints, we documented frequent microhomologies at the junctions in both chromothripsis and non-chromothripsis associated breakpoints. RNA-seq experiments confirmed expression of several predicted chimeric genes and genes with disrupted exon structure including ALK, NBAS, FHIT, PTPRD and ODZ4. Our study therefore indicates that both non-homologous end joining-mediated repair and replicative processes may account for genomic rearrangements in neuroblastoma. RNA-seq analysis allows the identification of the subset of abnormal transcripts expressed from genomic rearrangements that may be involved in neuroblastoma oncogenesis.
PLOS ONE | 2012
Pierre Mazot; Alex Cazes; Florent Dingli; Joffrey Degoutin; Theano Irinopoulou; Marie-Claude Boutterin; Bérangère Lombard; Damarys Loew; Bengt Hallberg; Ruth H. Palmer; Olivier Delattre; Isabelle Janoueix-Lerosey; Marc Vigny
Recently, activating mutations of the full length ALK receptor, with two hot spots at positions F1174 and R1275, have been characterized in sporadic cases of neuroblastoma. Here, we report similar basal patterns of ALK phosphorylation between the neuroblastoma IMR-32 cell line, which expresses only the wild-type receptor (ALKWT), and the SH-SY5Y cell line, which exhibits a heterozygous ALK F1174L mutation and expresses both ALKWT and ALKF1174L receptors. We demonstrate that this lack of detectable increased phosphorylation in SH-SY5Y cells is a result of intracellular retention and proteasomal degradation of the mutated receptor. As a consequence, in SH-SY5Y cells, plasma membrane appears strongly enriched for ALKWT whereas both ALKWT and ALKF1174L were present in intracellular compartments. We further explored ALK receptor trafficking by investigating the effect of agonist and antagonist mAb (monoclonal antibodies) on ALK internalization and down-regulation, either in SH-SY5Y cells or in cells expressing only ALKWT. We observe that treatment with agonist mAbs resulted in ALK internalization and lysosomal targeting for receptor degradation. In contrast, antagonist mAb induced ALK internalization and recycling to the plasma membrane. Importantly, we correlate this differential trafficking of ALK in response to mAb with the recruitment of the ubiquitin ligase Cbl and ALK ubiquitylation only after agonist stimulation. This study provides novel insights into the mechanisms regulating ALK trafficking and degradation, showing that various ALK receptor pools are regulated by proteasome or lysosome pathways according to their intracellular localization.
Clinical Cancer Research | 2015
Irina Lambertz; Candy Kumps; Shana Claeys; Sven Lindner; Anneleen Beckers; Els Janssens; Daniel Carter; Alex Cazes; Belamy B. Cheung; Marilena De Mariano; An De Bondt; Sara De Brouwer; Olivier Delattre; Jay Gibbons; Isabelle Janoueix-Lerosey; Genevieve Laureys; Chris Liang; Glenn M. Marchall; Michaël Porcu; Junko Takita; David Camacho Trujillo; Ilse Van den Wyngaert; Nadine Van Roy; Alan Van Goethem; Tom Van Maerken; Piotr Zabrocki; Jan Cools; Johannes H. Schulte; Jorge Vialard; Frank Speleman
Purpose: Activating ALK mutations are present in almost 10% of primary neuroblastomas and mark patients for treatment with small-molecule ALK inhibitors in clinical trials. However, recent studies have shown that multiple mechanisms drive resistance to these molecular therapies. We anticipated that detailed mapping of the oncogenic ALK-driven signaling in neuroblastoma can aid to identify potential fragile nodes as additional targets for combination therapies. Experimental Design: To achieve this goal, transcriptome profiling was performed in neuroblastoma cell lines with the ALKF1174L or ALKR1275Q hotspot mutations, ALK amplification, or wild-type ALK following pharmacologic inhibition of ALK using four different compounds. Next, we performed cross-species genomic analyses to identify commonly transcriptionally perturbed genes in MYCN/ALKF1174L double transgenic versus MYCN transgenic mouse tumors as compared with the mutant ALK-driven transcriptome in human neuroblastomas. Results: A 77-gene ALK signature was established and successfully validated in primary neuroblastoma samples, in a neuroblastoma cell line with ALKF1174L and ALKR1275Q regulable overexpression constructs and in other ALKomas. In addition to the previously established PI3K/AKT/mTOR, MAPK/ERK, and MYC/MYCN signaling branches, we identified that mutant ALK drives a strong upregulation of MAPK negative feedback regulators and upregulates RET and RET-driven sympathetic neuronal markers of the cholinergic lineage. Conclusions: We provide important novel insights into the transcriptional consequences and the complexity of mutant ALK signaling in this aggressive pediatric tumor. The negative feedback loop of MAPK pathway inhibitors may affect novel ALK inhibition therapies, whereas mutant ALK induced RET signaling can offer novel opportunities for testing ALK-RET oriented molecular combination therapies. Clin Cancer Res; 21(14); 3327–39. ©2015 AACR.
Oncotarget | 2014
Alex Cazes; Lucille Lopez-Delisle; Konstantina Tsarovina; Cécile Pierre-Eugène; Katleen De Preter; Michel Peuchmaur; André Nicolas; Claire Provost; Caroline Louis-Brennetot; Romain Daveau; Candy Kumps; Ilaria Cascone; Gudrun Schleiermacher; Aurélie Prignon; Franki Speleman; Hermann Rohrer; Olivier Delattre; Isabelle Janoueix-Lerosey
Oncotarget | 2015
Martin F. Orth; Alex Cazes; Elke Butt; Thomas G. P. Grunewald
Anticancer Research | 2016
Claire Provost; Aurélie Prignon; Alex Cazes; Valérie Combaret; Olivier Delattre; Isabelle Janoueix-Lerosey; Françoise Montravers; Jean-Noël Talbot
Cancer Research | 2017
Alex Cazes; Michele Babicky; Jeffery Chakedis; Divya Sood; Dawn Jaquish; Andrew M. Lowy
OncoPoint, 3rd Meeting, Abstracts | 2015
Irina Lambertz; Candy Kumps; Shana Claeys; Sven Lindner; Anneleen Beckers; Els Janssens; Daniel Carter; Alex Cazes; Belamy B. Cheung; Marilena De Mariano; David Camacho-Trujillo; An De Bondt; Sara De Brouwer; Jay Gibbons; Isabel Janoueix-Lerosey; Genevieve Laureys; Chris Liang; Glenn M. Marshall; Michaël Porcu; Junko Takita; Ilse Van den Wyngaert; Nadine Van Roy; Alan Van Goethem; Tom Van Maerken; Piotr Zabrocki; Jan Cools; Johannes H. Schulte; Jorge Vialard; Franki Speleman; Katleen De Preter