Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex Deng is active.

Publication


Featured researches published by Alex Deng.


knowledge discovery and data mining | 2012

Trustworthy online controlled experiments: five puzzling outcomes explained

Ron Kohavi; Alex Deng; Brian Frasca; Roger Longbotham; Toby Walker; Ya Xu

Online controlled experiments are often utilized to make data-driven decisions at Amazon, Microsoft, eBay, Facebook, Google, Yahoo, Zynga, and at many other companies. While the theory of a controlled experiment is simple, and dates back to Sir Ronald A. Fishers experiments at the Rothamsted Agricultural Experimental Station in England in the 1920s, the deployment and mining of online controlled experiments at scale--thousands of experiments now--has taught us many lessons. These exemplify the proverb that the difference between theory and practice is greater in practice than in theory. We present our learnings as they happened: puzzling outcomes of controlled experiments that we analyzed deeply to understand and explain. Each of these took multiple-person weeks to months to properly analyze and get to the often surprising root cause. The root causes behind these puzzling results are not isolated incidents; these issues generalized to multiple experiments. The heightened awareness should help readers increase the trustworthiness of the results coming out of controlled experiments. At Microsofts Bing, it is not uncommon to see experiments that impact annual revenue by millions of dollars, thus getting trustworthy results is critical and investing in understanding anomalies has tremendous payoff: reversing a single incorrect decision based on the results of an experiment can fund a whole team of analysts. The topics we cover include: the OEC (Overall Evaluation Criterion), click tracking, effect trends, experiment length and power, and carryover effects.


web search and data mining | 2013

Improving the sensitivity of online controlled experiments by utilizing pre-experiment data

Alex Deng; Ya Xu; Ron Kohavi; Toby Walker

Online controlled experiments are at the heart of making data-driven decisions at a diverse set of companies, including Amazon, eBay, Facebook, Google, Microsoft, Yahoo, and Zynga. Small differences in key metrics, on the order of fractions of a percent, may have very significant business implications. At Bing it is not uncommon to see experiments that impact annual revenue by millions of dollars, even tens of millions of dollars, either positively or negatively. With thousands of experiments being run annually, improving the sensitivity of experiments allows for more precise assessment of value, or equivalently running the experiments on smaller populations (supporting more experiments) or for shorter durations (improving the feedback cycle and agility). We propose an approach (CUPED) that utilizes data from the pre-experiment period to reduce metric variability and hence achieve better sensitivity. This technique is applicable to a wide variety of key business metrics, and it is practical and easy to implement. The results on Bings experimentation system are very successful: we can reduce variance by about 50%, effectively achieving the same statistical power with only half of the users, or half the duration.


international world wide web conferences | 2014

Statistical inference in two-stage online controlled experiments with treatment selection and validation

Alex Deng; Tianxi Li; Yu Guo

Online controlled experiments, also called A/B testing, have been established as the mantra for data-driven decision making in many web-facing companies. A/B Testing support decision making by directly comparing two variants at a time. It can be used for comparison between (1) two candidate treatments and (2) a candidate treatment and an established control. In practice, one typically runs an experiment with multiple treatments together with a control to make decision for both purposes simultaneously. This is known to have two issues. First, having multiple treatments increases false positives due to multiple comparison. Second, the selection process causes an upward bias in estimated effect size of the best observed treatment. To overcome these two issues, a two stage process is recommended, in which we select the best treatment from the first screening stage and then run the same experiment with only the selected best treatment and the control in the validation stage. Traditional application of this two-stage design often focus only on results from the second stage. In this paper, we propose a general methodology for combining the first screening stage data together with validation stage data for more sensitive hypothesis testing and more accurate point estimation of the treatment effect. Our method is widely applicable to existing online controlled experimentation systems.


knowledge discovery and data mining | 2016

Data-Driven Metric Development for Online Controlled Experiments: Seven Lessons Learned

Alex Deng; Xiaolin Shi

Online controlled experiments, also called A/B testing, have been established as the mantra for data-driven decision making in many web-facing companies. In recent years, there are emerging research works focusing on building the platform and scaling it up, best practices and lessons learned to obtain trustworthy results, and experiment design techniques and various issues related to statistical inference and testing. However, despite playing a central role in online controlled experiments, there is little published work on treating metric development itself as a data-driven process. In this paper, we focus on the topic of how to develop meaningful and useful metrics for online services in their online experiments, and show how data-driven techniques and criteria can be applied in metric development process. In particular, we emphasize two fundamental qualities for the goal metrics (or Overall Evaluation Criteria) of any online service: directionality and sensitivity. We share lessons on why these two qualities are critical, how to measure these two qualities of metrics of interest, how to develop metrics with clear directionality and high sensitivity by using approaches based on user behavior models and data-driven calibration, and how to choose the right goal metrics for the entire online services.


web search and data mining | 2015

Diluted Treatment Effect Estimation for Trigger Analysis in Online Controlled Experiments

Alex Deng; Victor Hu

Online controlled experiments, also called A/B testing, is playing a central role in many data-driven web-facing companies. It is well known and intuitively obvious to many practitioners that when testing a feature with low coverage, analyzing all data collected without zooming into the part that could be affected by the treatment often leads to under-powered hypothesis testing. A common practice is to use triggered analysis. To estimate the overall treatment effect, certain dilution formula is then applied to translate the estimated effect in triggered analysis back to the original all up population. In this paper, we discuss two different types of trigger analyses. We derive correct dilution formulas and show for a set of widely used metrics, namely ratio metrics, correctly deriving and applying those dilution formulas are not trivial. We observe many practitioners in this industry are often applying approximate formulas or even wrong formulas when doing effect dilution calculation. To deal with that, instead of estimating trigger treatment effect followed by effect translation using dilution formula, we aim at combining these two steps into one streamlined analysis, producing more accurate estimation of overall treatment effect together with even higher statistical power than a triggered analysis. The approach we propose in this paper is intuitive, easy to apply and general enough for all types of triggered analyses and all types of metrics.


ieee international conference on data science and advanced analytics | 2016

Continuous Monitoring of A/B Tests without Pain: Optional Stopping in Bayesian Testing

Alex Deng; Jiannan Lu; Shouyuan Chen

A/B testing is one of the most successful applications of statistical theory in the Internet age. A crucial problem of Null Hypothesis Statistical Testing (NHST), the backbone of A/B testing methodology, is that experimenters are not allowed to continuously monitor the results and make decisions in real time. Many people see this restriction as a setback against the trend in the technology toward real time data analytics. Recently, Bayesian Hypothesis Testing, which intuitively is more suitable for real time decision making, attracted growing interest as a viable alternative to NHST. While corrections of NHST for the continuous monitoring setting are well established in the existing literature and known in A/B testing community, the debate over the issue of whether continuous monitoring is a proper practice in Bayesian testing exists among both academic researchers and general practitioners. In this paper, we formally prove the validity of Bayesian testing under proper stopping rules, and illustrate the theoretical results with concrete simulation illustrations. We point out common bad practices where stopping rules are not proper, and discuss how priors can be learned objectively. General guidelines for researchers and practitioners are also provided.


web search and data mining | 2017

Trustworthy Analysis of Online A/B Tests: Pitfalls, challenges and solutions

Alex Deng; Jiannan Lu; Jonthan Litz

A/B tests (or randomized controlled experiments) play an integral role in the research and development cycles of technology companies. As in classic randomized experiments (e.g., clinical trials), the underlying statistical analysis of A/B tests is based on assuming the randomization unit is independent and identically distributed (\iid). However, the randomization mechanisms utilized in online A/B tests can be quite complex and may render this assumption invalid. Analysis that unjustifiably relies on this assumption can yield untrustworthy results and lead to incorrect conclusions. Motivated by challenging problems arising from actual online experiments, we propose a new method of variance estimation that relies only on practically plausible assumptions, is directly applicable to a wide of range of randomization mechanisms, and can be implemented easily. We examine its performance and illustrate its advantages over two commonly used methods of variance estimation on both simulated and empirical datasets. Our results lead to a deeper understanding of the conditions under which the randomization unit can be treated as \iid In particular, we show that for purposes of variance estimation, the randomization unit can be approximated as \iid when the individual treatment effect variation is small; however, this approximation can lead to variance under-estimation when the individual treatment effect variation is large.


British Journal of Mathematical and Statistical Psychology | 2018

A note on Type S/M errors in hypothesis testing

Jiannan Lu; Yixuan Qiu; Alex Deng

Motivated by the recent replication and reproducibility crisis, Gelman and Carlin (2014, Perspect. Psychol. Sci., 9, 641) advocated focusing on controlling for Type S/M errors, instead of the classic Type I/II errors, when conducting hypothesis testing. In this paper, we aim to fill several theoretical gaps in the methodology proposed by Gelman and Carlin (2014, Perspect. Psychol. Sci., 9, 641). In particular, we derive the closed-form expression for the expected Type M error, and study the mathematical properties of the probability of Type S error as well as the expected Type M error, such as monotonicity. We demonstrate the advantages of our results through numerical and empirical examples.


international acm sigir conference on research and development in information retrieval | 2017

A/B Testing at Scale: Accelerating Software Innovation

Alex Deng; Pavel Dmitriev; Somit Gupta; Ron Kohavi; Paul Raff; Lukas Vermeer

The Internet provides developers of connected software, including web sites, applications, and devices, an unprecedented opportunity to accelerate innovation by evaluating ideas quickly and accurately using controlled experiments, also known as A/B tests. From front-end user-interface changes to backend algorithms, from search engines (e.g., Google, Bing, Yahoo!) to retailers (e.g., Amazon, eBay, Etsy) to social networking services (e.g., Facebook, LinkedIn, Twitter) to travel services (e.g., Expedia, Airbnb, Booking.com) to many startups, online controlled experiments are now utilized to make data-driven decisions at a wide range of companies. While the theory of a controlled experiment is simple, and dates back to Sir Ronald A. Fishers experiments at the Rothamsted Agricultural Experimental Station in England in the 1920s, the deployment and evaluation of online controlled experiments at scale (100s of concurrently running experiments) across variety of web sites, mobile apps, and desktop applications presents many pitfalls and new research challenges. In this tutorial we will give an introduction to A/B testing, share key lessons learned from scaling experimentation at Bing to thousands of experiments per year, present real examples, and outline promising directions for future work. The tutorial will go beyond applications of A/B testing in information retrieval and will also discuss on practical and research challenges arising in experimentation on web sites and mobile and desktop apps. Our goal in this tutorial is to teach attendees how to scale experimentation for their teams, products, and companies, leading to better data-driven decisions. We also want to inspire more academic research in the relatively new and rapidly evolving field of online controlled experimentation.


knowledge discovery and data mining | 2018

Applying the Delta Method in Metric Analytics: A Practical Guide with Novel Ideas

Alex Deng; Ulf Knoblich; Jiannan Lu

During the last decade, the information technology industry has adopted a data-driven culture, relying on online metrics to measure and monitor business performance. Under the setting of big data, the majority of such metrics approximately follow normal distributions, opening up potential opportunities to model them directly without extra model assumptions and solve big data problems via closed-form formulas using distributed algorithms at a fraction of the cost of simulation-based procedures like bootstrap. However, certain attributes of the metrics, such as their corresponding data generating processes and aggregation levels, pose numerous challenges for constructing trustworthy estimation and inference procedures. Motivated by four real-life examples in metric development and analytics for large-scale A/B testing, we provide a practical guide to applying the Delta method, one of the most important tools from the classic statistics literature, to address the aforementioned challenges. We emphasize the central role of the Delta method in metric analytics by highlighting both its classic and novel applications.

Collaboration


Dive into the Alex Deng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge