Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex Hall is active.

Publication


Featured researches published by Alex Hall.


Journal of Climate | 2002

Synchronous Variability in the Southern Hemisphere Atmosphere, Sea Ice, and Ocean Resulting from the Annular Mode*

Alex Hall; Martin Visbeck

Zonally symmetric fluctuations of the midlatitude westerly winds characterize the primary mode of atmospheric variability in the Southern Hemisphere during all seasons. This is true not only in observations but also in an unforced 15 000-yr integration of a coarse-resolution (R15) coupled ocean‐atmosphere model. Here it is documented how this mode of atmospheric variability, known as the Southern Annular Mode (SAM), generates ocean circulation and sea ice variations in the model integration on interannual to centennial timescales that are tightly in phase with the SAM. The positive phase of the SAM is associated with an intensification of the surface westerlies over the circumpolar ocean (around 608S), and a weakening of the surface westerlies farther north. This induces Ekman drift to the north at all longitudes of the circumpolar ocean, and Ekman drift to the south at around 308S. Through mass continuity, the Ekman drift generates anomalous upwelling along the margins of the Antarctic continent, and downwelling around 458S. The anomalous flow diverging from the Antarctic continent also increases the vertical tilt of the isopycnals in the Southern Ocean, so that a more intense circumpolar current is also closely associated with positive SAM. In addition, the anomalous divergent flow advects sea ice farther north, resulting in an increase in sea ice coverage. Finally, positive SAM drives increases in poleward heat transport at about 308S, while decreases occur in the circumpolar region. Ocean and sea ice anomalies of the opposite sign occur when the SAM is negative. The ocean and sea ice fluctuations associated with the SAM constitute a significant fraction of simulated ocean variability poleward of 308S year-round. The robustness of the mechanisms relating the SAM to oceanic variability suggests that the SAM is likely an important source of large-scale variability in the real Southern Hemisphere ocean.


Journal of Climate | 2004

The Role of Surface Albedo Feedback in Climate

Alex Hall

Abstract A coarse resolution coupled ocean–atmosphere simulation in which surface albedo feedback is suppressed by prescribing surface albedo, is compared to one where snow and sea ice anomalies are allowed to affect surface albedo. Canonical CO2-doubling experiments were performed with both models to assess the impact of this feedback on equilibrium response to external forcing. It accounts for about half the high-latitude response to the forcing. Both models were also run for 1000 yr without forcing to assess the impact of surface albedo feedback on internal variability. Surprisingly little internal variability can be attributed to this feedback, except in the Northern Hemisphere continents during spring and in the sea ice zone of the Southern Hemisphere year-round. At these locations and during these seasons, it accounts for, at most, 20% of the variability. The main reason for this relatively weak signal is that horizontal damping processes dilute the impact of surface albedo feedback. When snow albed...


Journal of Climate | 2007

What Controls the Strength of Snow-Albedo Feedback?

Xin Qu; Alex Hall

Abstract The strength of snow-albedo feedback (SAF) in transient climate change simulations of the Fourth Assessment of the Intergovernmental Panel on Climate Change is generally determined by the surface-albedo decrease associated with a loss of snow cover rather than the reduction in snow albedo due to snow metamorphosis in a warming climate. The large intermodel spread in SAF strength is likewise attributable mostly to the snow cover component. The spread in the strength of this component is in turn mostly attributable to a correspondingly large spread in mean effective snow albedo. Models with large effective snow albedos have a large surface-albedo contrast between snow-covered and snow-free regions and exhibit a correspondingly large surface-albedo decrease when snow cover decreases. Models without explicit treatment of the vegetation canopy in their surface-albedo calculations typically have high effective snow albedos and strong SAF, often stronger than observed. In models with explicit canopy tre...


Journal of Climate | 1999

The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global Warming

Alex Hall; Syukuro Manabe

To understand the role of water vapor feedback in unperturbed surface temperature variability, a version of the Geophysical Fluid Dynamics Laboratory coupled ocean‐atmosphere model is integrated for 1000 yr in two configurations, one with water vapor feedback and one without. For all spatial scales, the model with water vapor feedback has more low-frequency (timescale


Climate Dynamics | 2014

On the spread of changes in marine low cloud cover in climate model simulations of the 21st century

Xin Qu; Alex Hall; Stephen A. Klein; Peter Caldwell

2 yr) surface temperature variability than the one without. Thus water vapor feedback is positive in the context of the model’s unperturbed variability. In addition, water vapor feedback is more effective the longer the timescale of the surface temperature anomaly and the larger its spatial scale. To understand the role of water vapor feedback in global warming, two 500-yr integrations were also performed in which CO2 was doubled in both model configurations. The final surface global warming in the model with water vapor feedback is 3.388C, while in the one without it is only 1.058C. However, the model’s water vapor feedback has a larger impact on surface warming in response to a doubling of CO2 than it does on internally generated, low-frequency, global-mean surface temperature anomalies. Water vapor feedback’s strength therefore depends on the type of temperature anomaly it affects. The authors found that the degree to which a surface temperature anomaly penetrates into the troposphere is a critical factor in determining the effectiveness of its associated water vapor feedback. The more the anomaly penetrates, the stronger the feedback. It is also shown that the apparent impact of water vapor feedback is altered by other feedback mechanisms, such as albedo and cloud feedback. The sensitivity of the results to this fact is examined. Finally, the authors compare the local and global-mean surface temperature time series from both unperturbed variability experiments to the observed record. The experiment without water vapor feedback does not have enough global-scale variability to reproduce the magnitude of the variability in the observed global-mean record, whether or not one removes the warming trend observed over the past century. In contrast, the amount of variability in the experiment with water vapor feedback is comparable to that of the global-mean record, provided the observed warming trend is removed. Thus, the authors are unable to simulate the observed levels of variability without water vapor feedback.


Journal of Climate | 2006

Assessing Snow Albedo Feedback in Simulated Climate Change

Xin Qu; Alex Hall

In 36 climate change simulations associated with phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), changes in marine low cloud cover (LCC) exhibit a large spread, and may be either positive or negative. Here we develop a heuristic model to understand the source of the spread. The model’s premise is that simulated LCC changes can be interpreted as a linear combination of contributions from factors shaping the clouds’ large-scale environment. We focus primarily on two factors—the strength of the inversion capping the atmospheric boundary layer (measured by the estimated inversion strength, EIS) and sea surface temperature (SST). For a given global model, the respective contributions of EIS and SST are computed. This is done by multiplying (1) the current-climate’s sensitivity of LCC to EIS or SST variations, by (2) the climate-change signal in EIS or SST. The remaining LCC changes are then attributed to changes in greenhouse gas and aerosol concentrations, and other environmental factors. The heuristic model is remarkably skillful. Its SST term dominates, accounting for nearly two-thirds of the intermodel variance of LCC changes in CMIP3 models, and about half in CMIP5 models. Of the two factors governing the SST term (the SST increase and the sensitivity of LCC to SST perturbations), the SST sensitivity drives the spread in the SST term and hence the spread in the overall LCC changes. This sensitivity varies a great deal from model to model and is strongly linked to the types of cloud and boundary layer parameterizations used in the models. EIS and SST sensitivities are also estimated using observational cloud and meteorological data. The observed sensitivities are generally consistent with the majority of models as well as expectations from prior research. Based on the observed sensitivities and the relative magnitudes of simulated EIS and SST changes (which we argue are also physically reasonable), the heuristic model predicts LCC will decrease over the 21st-century. However, to place a strong constraint, for example on the magnitude of the LCC decrease, will require longer observational records and a careful assessment of other environmental factors producing LCC changes. Meanwhile, addressing biases in simulated EIS and SST sensitivities will clearly be an important step towards reducing intermodel spread in simulated LCC changes.


Journal of Climate | 2009

Current GCMs' Unrealistic Negative Feedback in the Arctic

Julien Boé; Alex Hall; Xin Qu

Abstract In this paper, the two factors controlling Northern Hemisphere springtime snow albedo feedback in transient climate change are isolated and quantified based on scenario runs of 17 climate models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The first factor is the dependence of planetary albedo on surface albedo, representing the atmospheres attenuation effect on surface albedo anomalies. It is potentially a major source of divergence in simulations of snow albedo feedback because of large differences in simulated cloud fields in Northern Hemisphere land areas. To calculate the dependence, an analytical model governing planetary albedo was developed. Detailed validations of the analytical model for two of the simulations are shown, version 3 of the Community Climate System Model (CCSM3) and the Geophysical Fluid Dynamics Laboratory global coupled Climate Model 2.0 (CM2.0), demonstrating that it facilitates a highly accurate calculation of the dependence of plane...


Journal of Climate | 2013

California Winter Precipitation Change under Global Warming in the Coupled Model Intercomparison Project Phase 5 Ensemble

J. David Neelin; Baird Langenbrunner; Joyce E. Meyerson; Alex Hall; Neil Berg

AbstractThe large spread of the response to anthropogenic forcing simulated by state-of-the-art climate models in the Arctic is investigated. A feedback analysis framework specific to the Arctic is developed to address this issue. The feedback analysis shows that a large part of the spread of Arctic climate change is explained by the longwave feedback parameter. The large spread of the negative longwave feedback parameter is in turn mainly due to variations in temperature feedback. The vertical temperature structure of the atmosphere in the Arctic, characterized by a surface inversion during wintertime, exerts a strong control on the temperature feedback and consequently on simulated Arctic climate change. Most current climate models likely overestimate the climatological strength of the inversion, leading to excessive negative longwave feedback. The authors conclude that the models’ near-equilibrium response to anthropogenic forcing is generally too small.


Journal of Climate | 2006

Local Regimes of Atmospheric Variability: A Case Study of Southern California

Sébastien Conil; Alex Hall

AbstractProjections of possible precipitation change in California under global warming have been subject to considerable uncertainty because California lies between the region anticipated to undergo increases in precipitation at mid-to-high latitudes and regions of anticipated decrease in the subtropics. Evaluation of the large-scale model experiments for phase 5 of the Coupled Model Intercomparison Project (CMIP5) suggests a greater degree of agreement on the sign of the winter (December–February) precipitation change than in the previous such intercomparison, indicating a greater portion of California falling within the increased precipitation zone. While the resolution of global models should not be relied on for accurate depiction of topographic rainfall distribution within California, the precipitation changes depend substantially on large-scale shifts in the storm tracks arriving at the coast. Significant precipitation increases in the region arriving at the California coast are associated with an ...


Climate Dynamics | 2012

Causes of recent changes in western North American snowpack

Sarah B. Kapnick; Alex Hall

Abstract The primary regimes of local atmospheric variability are examined in a 6-km regional atmospheric model of the southern third of California, an area of significant land surface heterogeneity, intense topography, and climate diversity. The model was forced by reanalysis boundary conditions over the period 1995–2003. The region is approximately the same size as a typical grid box of the current generation of general circulation models used for global climate prediction and reanalysis product generation, and so can be thought of as a laboratory for the study of climate at spatial scales smaller than those resolved by global simulations and reanalysis products. It is found that the simulated circulation during the October–March wet season, when variability is most significant, can be understood through an objective classification technique in terms of three wind regimes. The composite surface wind patterns associated with these regimes exhibit significant spatial structure within the model domain, con...

Collaboration


Dive into the Alex Hall's collaboration.

Top Co-Authors

Avatar

Xin Qu

University of California

View shared research outputs
Top Co-Authors

Avatar

Fengpeng Sun

University of California

View shared research outputs
Top Co-Authors

Avatar

Julien Boé

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mimi Hughes

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Daniel Walton

University of California

View shared research outputs
Top Co-Authors

Avatar

Scott Capps

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah B. Kapnick

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge