Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex Henderson is active.

Publication


Featured researches published by Alex Henderson.


Nature Genetics | 2011

Germline mutations in RAD51D confer susceptibility to ovarian cancer

Chey Loveday; Clare Turnbull; Emma Ramsay; Deborah Hughes; Elise Ruark; Jessica Frankum; Georgina Bowden; Bolot Kalmyrzaev; Margaret Warren-Perry; Katie Snape; Julian Adlard; Julian Barwell; Jonathan Berg; Angela F. Brady; Carole Brewer; G Brice; Cyril Chapman; Jackie Cook; Rosemarie Davidson; Alan Donaldson; Fiona Douglas; Lynn Greenhalgh; Alex Henderson; Louise Izatt; Ajith Kumar; Fiona Lalloo; Zosia Miedzybrodzka; Patrick J. Morrison; Joan Paterson; Mary Porteous

Recently, RAD51C mutations were identified in families with breast and ovarian cancer. This observation prompted us to investigate the role of RAD51D in cancer susceptibility. We identified eight inactivating RAD51D mutations in unrelated individuals from 911 breast-ovarian cancer families compared with one inactivating mutation identified in 1,060 controls (P = 0.01). The association found here was principally with ovarian cancer, with three mutations identified in the 59 pedigrees with three or more individuals with ovarian cancer (P = 0.0005). The relative risk of ovarian cancer for RAD51D mutation carriers was estimated to be 6.30 (95% CI 2.86–13.85, P = 4.8 × 10−6). By contrast, we estimated the relative risk of breast cancer to be 1.32 (95% CI 0.59–2.96, P = 0.50). These data indicate that RAD51D mutation testing may have clinical utility in individuals with ovarian cancer and their families. Moreover, we show that cells deficient in RAD51D are sensitive to treatment with a PARP inhibitor, suggesting a possible therapeutic approach for cancers arising in RAD51D mutation carriers.


Nature | 2012

Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer

Elise Ruark; Katie Snape; Peter Humburg; Chey Loveday; Ilirjana Bajrami; Rachel Brough; Daniel Nava Rodrigues; Anthony Renwick; Sheila Seal; Emma Ramsay; Silvana Del Vecchio Duarte; Manuel A. Rivas; Margaret Warren-Perry; Anna Zachariou; Adriana Campion-Flora; Sandra Hanks; Anne Murray; Naser Ansari Pour; Jenny Douglas; Lorna Gregory; Andrew J. Rimmer; Neil Walker; Tsun-Po Yang; Julian Adlard; Julian Barwell; Jonathan Berg; Angela F. Brady; Carole Brewer; G Brice; Cyril Chapman

Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case–control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10−5), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10−4) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10−9). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification.


American Journal of Medical Genetics Part A | 2014

Clinical delineation and natural history of the PIK3CA -related overgrowth spectrum

Kim M. Keppler-Noreuil; Julie C. Sapp; Marjorie J. Lindhurst; Victoria Parker; Cathy Blumhorst; Thomas N. Darling; Laura L. Tosi; Susan M. Huson; Richard W Whitehouse; Eveliina Jakkula; Ian M. Grant; Meena Balasubramanian; Kate Chandler; Jamie L. Fraser; Zoran Gucev; Yanick J. Crow; Leslie Manace Brennan; Robin D. Clark; Elizabeth A. Sellars; Loren D.M. Pena; Vidya Krishnamurty; Andrew Y Shuen; Nancy Braverman; Michael L. Cunningham; V. Reid Sutton; Velibor Tasic; John M. Graham; Joseph Geer; Alex Henderson; Robert K. Semple

Somatic mutations in the phosphatidylinositol/AKT/mTOR pathway cause segmental overgrowth disorders. Diagnostic descriptors associated with PIK3CA mutations include fibroadipose overgrowth (FAO), Hemihyperplasia multiple Lipomatosis (HHML), Congenital Lipomatous Overgrowth, Vascular malformations, Epidermal nevi, Scoliosis/skeletal and spinal (CLOVES) syndrome, macrodactyly, and the megalencephaly syndrome, Megalencephaly‐Capillary malformation (MCAP) syndrome. We set out to refine the understanding of the clinical spectrum and natural history of these phenotypes, and now describe 35 patients with segmental overgrowth and somatic PIK3CA mutations. The phenotypic data show that these previously described disease entities have considerable overlap, and represent a spectrum. While this spectrum overlaps with Proteus syndrome (sporadic, mosaic, and progressive) it can be distinguished by the absence of cerebriform connective tissue nevi and a distinct natural history. Vascular malformations were found in 15/35 (43%) and epidermal nevi in 4/35 (11%) patients, lower than in Proteus syndrome. Unlike Proteus syndrome, 31/35 (89%) patients with PIK3CA mutations had congenital overgrowth, and in 35/35 patients this was asymmetric and disproportionate. Overgrowth was mild with little postnatal progression in most, while in others it was severe and progressive requiring multiple surgeries. Novel findings include: adipose dysregulation present in all patients, unilateral overgrowth that is predominantly left‐sided, overgrowth that affects the lower extremities more than the upper extremities and progresses in a distal to proximal pattern, and in the most severely affected patients is associated with marked paucity of adipose tissue in unaffected areas. While the current data are consistent with some genotype–phenotype correlation, this cannot yet be confirmed.


European Journal of Human Genetics | 2012

How genetically heterogeneous is Kabuki syndrome?: MLL2 testing in 116 patients, review and analyses of mutation and phenotypic spectrum

Siddharth Banka; Ratna Veeramachaneni; William Reardon; Emma Howard; Sancha Bunstone; Nicola Ragge; Michael J. Parker; Yanick J. Crow; Bronwyn Kerr; Helen Kingston; Kay Metcalfe; Kate Chandler; Alex Magee; Fiona Stewart; Vivienne McConnell; Deirdre E. Donnelly; Siren Berland; Gunnar Houge; Jenny Morton; Christine Oley; Nicole Revencu; Soo Mi Park; Sally Davies; Andrew E. Fry; Sally Ann Lynch; Harinder Gill; Susann Schweiger; Wayne W K Lam; John Tolmie; Shehla Mohammed

MLL2 mutations are detected in 55 to 80% of patients with Kabuki syndrome (KS). In 20 to 45% patients with KS, the genetic basis remains unknown, suggesting possible genetic heterogeneity. Here, we present the largest yet reported cohort of 116 patients with KS. We identified MLL2 variants in 74 patients, of which 47 are novel and a majority are truncating. We show that pathogenic missense mutations were commonly located in exon 48. We undertook a systematic facial KS morphology study of patients with KS at our regional dysmorphology meeting. Our data suggest that nearly all patients with typical KS facial features have pathogenic MLL2 mutations, although KS can be phenotypically variable. Furthermore, we show that MLL2 mutation-positive KS patients are more likely to have feeding problems, kidney anomalies, early breast bud development, joint dislocations and palatal malformations in comparison with MLL2 mutation-negative patients. Our work expands the mutation spectrum of MLL2 that may help in better understanding of this molecule, which is important in gene expression, epigenetic control of active chromatin states, embryonic development and cancer. Our analyses of the phenotype indicates that MLL2 mutation-positive and -negative patients differ systematically, and genetic heterogeneity of KS is not as extensive as previously suggested. Moreover, phenotypic variability of KS suggests that MLL2 testing should be considered even in atypical patients.


American Journal of Human Genetics | 2015

Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling

Lot Snijders Blok; Erik Madsen; Jane Juusola; Christian Gilissen; Diana Baralle; Margot R.F. Reijnders; Hanka Venselaar; Céline Helsmoortel; Megan T. Cho; Alexander Hoischen; Lisenka E.L.M. Vissers; Tom S. Koemans; Willemijn Wissink-Lindhout; Evan E. Eichler; Corrado Romano; Hilde Van Esch; Connie Stumpel; Maaike Vreeburg; Eric Smeets; Karin Oberndorff; Bregje W.M. van Bon; Marie Shaw; Jozef Gecz; Eric Haan; Melanie Bienek; Corinna Jensen; Bart Loeys; Anke Van Dijck; A. Micheil Innes; Hilary Racher

Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.


Familial Cancer | 2009

SDHB-associated renal oncocytoma suggests a broadening of the renal phenotype in hereditary paragangliomatosis

Alex Henderson; Fiona Douglas; P. Perros; C. Morgan; Eamonn R. Maher

Mutations in SDHB are one of the causes of hereditary paraganglioma syndrome. Germline mutations in SDHB predispose to the development of head and neck paragangliomas and phaeochromocytomas. Renal tumours are also increasingly being reported as component tumours in hereditary paragangliomatosis associated with mutations in SDHB. We present the first reported case of a family in whom an individual shown to carry a mutation in SDHB developed a renal oncocytoma. We review other reports of renal tumours associated with SDHB-associated hereditary paragangliomatosis and suggest that various histological subtypes of renal tumours are part of this condition. This observation indicates that SDHB-associated hereditary paragangliomatosis is unlike most tumour predisposition syndromes associated with the development of renal tumours which are usually associated with specific histological sub-types. The increasing recognition of the involvement of renal tumours in SDHB mutation carriers suggests that renal screening is likely to be valuable for these patients. SDHB mutations should also be considered in the context of genetic testing when renal tumours, regardless of histopathology, present in families with other tumours consistent hereditary paraganglioma syndrome.


Human Molecular Genetics | 2012

Gene-gene interactions in breast cancer susceptibility

Clare Turnbull; Sheila Seal; Anthony Renwick; Margaret Warren-Perry; Deborah Hughes; Anna Elliott; David Pernet; Susan Peock; Julian Adlard; Julian Barwell; Jonathan Berg; Angela F. Brady; Carole Brewer; G Brice; Cyril Chapman; Jackie Cook; Rosemarie Davidson; Alan Donaldson; Fiona Douglas; Lynn Greenhalgh; Alex Henderson; Louise Izatt; Ajith Kumar; Fiona Lalloo; Zosia Miedzybrodzka; Patrick J. Morrison; Joan Paterson; Mary Porteous; Mark T. Rogers; Susan Shanley

There have been few definitive examples of gene-gene interactions in humans. Through mutational analyses in 7325 individuals, we report four interactions (defined as departures from a multiplicative model) between mutations in the breast cancer susceptibility genes ATM and CHEK2 with BRCA1 and BRCA2 (case-only interaction between ATM and BRCA1/BRCA2 combined, P = 5.9 × 10(-4); ATM and BRCA1, P= 0.01; ATM and BRCA2, P= 0.02; CHEK2 and BRCA1/BRCA2 combined, P = 2.1 × 10(-4); CHEK2 and BRCA1, P= 0.01; CHEK2 and BRCA2, P= 0.01). The interactions are such that the resultant risk of breast cancer is lower than the multiplicative product of the constituent risks, and plausibly reflect the functional relationships of the encoded proteins in DNA repair. These findings have important implications for models of disease predisposition and clinical translation.


Journal of Medical Genetics | 2013

Heterogeneity of mutational mechanisms and modes of inheritance in auriculocondylar syndrome

Christopher T. Gordon; Alice Vuillot; Sandrine Marlin; Erica H. Gerkes; Alex Henderson; Adila Al-Kindy; Muriel Holder-Espinasse; Sarah S. Park; Asma Omarjee; Mateo Sanchis-Borja; Eya Ben Bdira; Myriam Oufadem; Birgit Sikkema-Raddatz; Alison Stewart; Rodger Palmer; Ruth McGowan; Florence Petit; Bruno Delobel; Michael R. Speicher; Paul Aurora; David Kilner; Philippe Pellerin; Marie Simon; Jean Paul Bonnefont; Edward S. Tobias; Sixto García-Miñaúr; Maria Bitner-Glindzicz; Pernille Lindholm; Brigitte A. Meijer; Véronique Abadie

Background Auriculocondylar syndrome (ACS) is a rare craniofacial disorder consisting of micrognathia, mandibular condyle hypoplasia and a specific malformation of the ear at the junction between the lobe and helix. Missense heterozygous mutations in the phospholipase C, β 4 (PLCB4) and guanine nucleotide binding protein (G protein), α inhibiting activity polypeptide 3 (GNAI3) genes have recently been identified in ACS patients by exome sequencing. These genes are predicted to function within the G protein-coupled endothelin receptor pathway during craniofacial development. Results We report eight additional cases ascribed to PLCB4 or GNAI3 gene lesions, comprising six heterozygous PLCB4 missense mutations, one heterozygous GNAI3 missense mutation and one homozygous PLCB4 intragenic deletion. Certain residues represent mutational hotspots; of the total of 11 ACS PLCB4 missense mutations now described, five disrupt Arg621 and two disrupt Asp360. The narrow distribution of mutations within protein space suggests that the mutations may result in dominantly interfering proteins, rather than haploinsufficiency. The consanguineous parents of the patient with a homozygous PLCB4 deletion each harboured the heterozygous deletion, but did not present the ACS phenotype, further suggesting that ACS is not caused by PLCB4 haploinsufficiency. In addition to ACS, the patient harbouring a homozygous deletion presented with central apnoea, a phenotype that has not been previously reported in ACS patients. Conclusions These findings indicate that ACS is not only genetically heterogeneous but also an autosomal dominant or recessive condition according to the nature of the PLCB4 gene lesion.


Human Mutation | 2016

De Novo Truncating Mutations in the Kinetochore-Microtubules Attachment Gene CHAMP1 Cause Syndromic Intellectual Disability

Bertrand Isidor; Sébastien Küry; Jill A. Rosenfeld; Thomas Besnard; Sébastien Schmitt; Shelagh Joss; Sally Davies; Robert Roger Lebel; Alex Henderson; Christian P. Schaaf; Haley Streff; Yaping Yang; Vani Jain; Nodoka Chida; Xénia Latypova; Cédric Le Caignec; Benjamin Cogné; Sandra Mercier; Marie Vincent; Estelle Colin; Dominique Bonneau; Anne-Sophie Denommé; P. Parent; Brigitte Gilbert-Dussardier; Sylvie Odent; Annick Toutain; Amélie Piton; Christian Dina; Audrey Donnart; Pierre Lindenbaum

A rare syndromic form of intellectual disability with impaired speech was recently found associated with mutations in CHAMP1 (chromosome alignment‐maintaining phosphoprotein 1), the protein product of which is directly involved in microtubule‐kinetochore attachment. Through whole‐exome sequencing in six unrelated nonconsanguineous families having a sporadic case of intellectual disability, we identified six novel de novo truncating mutations in CHAMP1: c.1880C>G p.(Ser627*), c.1489C>T; p.(Arg497*), c.1876_1877delAG; p.(Ser626Leufs*4), c.1043G>A; p.(Trp348*), c.1002G>A; p.(Trp334*), and c.958_959delCC; p.(Pro320*). Our clinical observations confirm the phenotypic homogeneity of the syndrome, which represents therefore a distinct clinical entity. Besides, our functional studies show that CHAMP1 protein variants are delocalized from chromatin and are unable to bind to two of its direct partners, POGZ and HP1. These data suggest a pathogenic mechanism of the CHAMP1‐associated intellectual disability syndrome mediated by direct interacting partners of CHAMP1, several of which are involved in chromo/kinetochore‐related disorders.


American Journal of Human Genetics | 2017

De Novo Mutations in EBF3 Cause a Neurodevelopmental Syndrome.

Hannah Sleven; Seth Welsh; Jing Yu; Mair E.A. Churchill; Caroline F. Wright; Alex Henderson; Rita Horvath; Julia Rankin; Julie Vogt; Alex Magee; Vivienne McConnell; Andrew Green; Mary D. King; Helen Cox; Linlea Armstrong; Anna Lehman; Tanya N. Nelson; Jonathan Williams; Penny Clouston; James Hagman; Andrea H. Németh

Early B cell factor 3 (EBF3) is an atypical transcription factor that is thought to influence the laminar formation of the cerebral cortex. Here, we report that de novo mutations in EBF3 cause a complex neurodevelopmental syndrome. The mutations were identified in two large-scale sequencing projects: the UK Deciphering Developmental Disorders (DDD) study and the Canadian Clinical Assessment of the Utility of Sequencing and Evaluation as a Service (CAUSES) study. The core phenotype includes moderate to severe intellectual disability, and many individuals exhibit cerebellar ataxia, subtle facial dysmorphism, strabismus, and vesicoureteric reflux, suggesting that EBF3 has a widespread developmental role. Pathogenic de novo variants identified in EBF3 include multiple loss-of-function and missense mutations. Structural modeling suggested that the missense mutations affect DNA binding. Functional analysis of mutant proteins with missense substitutions revealed reduced transcriptional activities and abilities to form heterodimers with wild-type EBF3. We conclude that EBF3, a transcription factor previously unknown to be associated with human disease, is important for brain and other organ development and warrants further investigation.

Collaboration


Dive into the Alex Henderson's collaboration.

Top Co-Authors

Avatar

Carole Brewer

Royal Devon and Exeter Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jackie Cook

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Lynn Greenhalgh

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fiona Lalloo

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

G Brice

St George's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian Adlard

Chapel Allerton Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge