Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex J. Tipping is active.

Publication


Featured researches published by Alex J. Tipping.


Nature Biotechnology | 2013

Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments

Quin F. Wills; Kenneth J. Livak; Alex J. Tipping; Tariq Enver; Andrew Goldson; Darren W. Sexton; Christopher Holmes

Gene expression in multiple individual cells from a tissue or culture sample varies according to cell-cycle, genetic, epigenetic and stochastic differences between the cells. However, single-cell differences have been largely neglected in the analysis of the functional consequences of genetic variation. Here we measure the expression of 92 genes affected by Wnt signaling in 1,440 single cells from 15 individuals to associate single-nucleotide polymorphisms (SNPs) with gene-expression phenotypes, while accounting for stochastic and cell-cycle differences between cells. We provide evidence that many heritable variations in gene function--such as burst size, burst frequency, cell cycle-specific expression and expression correlation/noise between cells--are masked when expression is averaged over many cells. Our results demonstrate how single-cell analyses provide insights into the mechanistic and network effects of genetic variability, with improved statistical power to model these effects on gene expression.


Molecular and Cellular Biology | 2005

ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis

Anna Schuh; Alex J. Tipping; Allison J. Clark; Isla Hamlett; Boris Guyot; Francesco J. Iborra; Patrick Rodriguez; John Strouboulis; Tariq Enver; Paresh Vyas; Catherine Porcher

ABSTRACT Lineage specification and cellular maturation require coordinated regulation of gene expression programs. In large part, this is dependent on the activator and repressor functions of protein complexes associated with tissue-specific transcriptional regulators. In this study, we have used a proteomic approach to characterize multiprotein complexes containing the key hematopoietic regulator SCL in erythroid and megakaryocytic cell lines. One of the novel SCL-interacting proteins identified in both cell types is the transcriptional corepressor ETO-2. Interaction between endogenous proteins was confirmed in primary cells. We then showed that SCL complexes are shared but also significantly differ in the two cell types. Importantly, SCL/ETO-2 interacts with another corepressor, Gfi-1b, in red cells but not megakaryocytes. The SCL/ETO-2/Gfi-1b association is lost during erythroid differentiation of primary fetal liver cells. Genetic studies of erythroid cells show that ETO-2 exerts a repressor effect on SCL target genes. We suggest that, through its association with SCL, ETO-2 represses gene expression in the early stages of erythroid differentiation and that alleviation/modulation of the repressive state is then required for expression of genes necessary for terminal erythroid maturation to proceed.


Methods | 2013

Methods for qPCR gene expression profiling applied to 1440 lymphoblastoid single cells

Kenneth J. Livak; Quin F. Wills; Alex J. Tipping; Krishnalekha Datta; Rowena Mittal; Andrew Goldson; Darren W. Sexton; Christopher Holmes

Highlights ► Microfluidic arrays enable analysis of 96 qPCR assays on 1440 single cells. ► Detailed methods on obtaining qPCR data and performing preliminary data processing. ► Data from sufficient cells to address noise inherent in single-cell transcription. ► Methods used for conventional qPCR do not necessarily apply to single-cell qPCR.


Blood | 2009

High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle

Alex J. Tipping; Cristina Pina; Anders Castor; Dengli Hong; Neil P. Rodrigues; Lorenza Lazzari; Gillian May; Sten Eirik W. Jacobsen; Tariq Enver

Evidence suggests the transcription factor GATA-2 is a critical regulator of murine hematopoietic stem cells. Here, we explore the relation between GATA-2 and cell proliferation and show that inducing GATA-2 increases quiescence (G(0) residency) of murine and human hematopoietic cells. In human cord blood, quiescent fractions (CD34(+)CD38(-)Hoechst(lo)Pyronin Y(lo)) express more GATA-2 than cycling counterparts. Enforcing GATA-2 expression increased quiescence of cord blood cells, reducing proliferation and performance in long-term culture-initiating cell and colony-forming cell (CFC) assays. Gene expression analysis places GATA-2 upstream of the quiescence regulator MEF, but enforcing MEF expression does not prevent GATA-2-conferred quiescence, suggesting additional regulators are involved. Although known quiescence regulators p21(CIP1) and p27(KIP1) do not appear to be responsible, enforcing GATA-2 reduced expression of regulators of cell cycle such as CCND3, CDK4, and CDK6. Enforcing GATA-2 inhibited human hematopoiesis in vivo: cells with highest exogenous expression (GATA-2(hi)) failed to contribute to hematopoiesis in nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice, whereas GATA-2(lo) cells contributed with delayed kinetics and low efficiency, with reduced expression of Ki-67. Thus, GATA-2 activity inhibits cell cycle in vitro and in vivo, highlighting GATA-2 as a molecular entry point into the transcriptional program regulating quiescence in human hematopoietic stem and progenitor cells.


Blood | 2008

GATA-2 regulates granulocyte-macrophage progenitor cell function.

Neil P. Rodrigues; Ashleigh S. Boyd; Cristina Fugazza; Gillian May; YanPing Guo; Alex J. Tipping; David T. Scadden; Paresh Vyas; Tariq Enver

The zinc finger transcription factor GATA-2 has been implicated in the regulation of hematopoietic stem cells. Herein, we explored the role of GATA-2 as a candidate regulator of the hematopoietic progenitor cell compartment. We showed that bone marrow from GATA-2 heterozygote (GATA-2(+/-)) mice displayed attenuated granulocyte-macrophage progenitor function in colony-forming cell (CFC) and serial replating CFC assays. This defect was mapped to the Lin(-)CD117(+)Sca-1(-)CD34(+)CD16/32(high) granulocyte-macrophage progenitor (GMP) compartment of GATA-2(+/-) marrow, which was reduced in size and functionally impaired in CFC assays and competitive transplantation. Similar functional impairments were obtained using a RNA interference approach to stably knockdown GATA-2 in wild-type GMP. Although apoptosis and cell-cycle distribution remained unperturbed in GATA-2(+/-) GMP, quiescent cells from GATA-2(+/-) GMP exhibited altered functionality. Gene expression analysis showed attenuated expression of HES-1 mRNA in GATA-2-deficient GMP. Binding of GATA-2 to the HES-1 locus was detected in the myeloid progenitor cell line 32Dcl3, and enforced expression of HES-1 expression in GATA-2(+/-) GMP rectified the functional defect, suggesting that GATA-2 regulates myeloid progenitor function through HES-1. These data collectively point to GATA-2 as a novel, pivotal determinant of GMP cell fate.


Cell Stem Cell | 2013

Dynamic Analysis of Gene Expression and Genome-wide Transcription Factor Binding during Lineage Specification of Multipotent Progenitors.

Gillian May; Shamit Soneji; Alex J. Tipping; José Teles; Simon J. McGowan; Mengchu Wu; Yanping Guo; Cristina Fugazza; John Brown; Göran Karlsson; Cristina Pina; Victor Olariu; Stephen Taylor; Daniel G. Tenen; Carsten Peterson; Tariq Enver

Summary We used the paradigmatic GATA-PU.1 axis to explore, at the systems level, dynamic relationships between transcription factor (TF) binding and global gene expression programs as multipotent cells differentiate. We combined global ChIP-seq of GATA1, GATA2, and PU.1 with expression profiling during differentiation to erythroid and neutrophil lineages. Our analysis reveals (1) differential complexity of sequence motifs bound by GATA1, GATA2, and PU.1; (2) the scope and interplay of GATA1 and GATA2 programs within, and during transitions between, different cell compartments, and the extent of their hard-wiring by DNA motifs; (3) the potential to predict gene expression trajectories based on global associations between TF-binding data and target gene expression; and (4) how dynamic modeling of DNA-binding and gene expression data can be used to infer regulatory logic of TF circuitry. This rubric exemplifies the utility of this cross-platform resource for deconvoluting the complexity of transcriptional programs controlling stem/progenitor cell fate in hematopoiesis.


The International Journal of Biochemistry & Cell Biology | 2012

GATA-2 mediated regulation of normal hematopoietic stem/progenitor cell function, myelodysplasia and myeloid leukemia.

Neil P. Rodrigues; Alex J. Tipping; Zhengke Wang; Tariq Enver

Unremitting blood cell production throughout the lifetime of an organism is reliant on hematopoietic stem cells (HSCs). A rare and relatively quiescent cell type, HSCs are, on entry into cell cycle fated to self-renew, undergo apoptosis or differentiate to progenitors (HPCs) that eventually yield specific classes of blood cells. Disruption of these HSC fate decisions is considered to be fundamental to the development of leukemia. Much effort has therefore been placed on understanding the molecular pathways that regulate HSC fate decisions and how these processes are undermined in leukemia. Transcription factors have emerged as critical regulators in this respect. Here we review the participation of zinc finger transcription factor GATA-2 in regulating normal hematopoietic stem and progenitor cell functionality, myelodysplasia and myeloid leukemia.


PLOS ONE | 2015

Distinct Mechanisms of Inadequate Erythropoiesis Induced by Tumor Necrosis Factor Alpha or Malarial Pigment

Abigail A. Lamikanra; Alison T. Merryweather-Clarke; Alex J. Tipping; David J. Roberts

The role of infection in erythropoietic dysfunction is poorly understood. In children with P. falciparum malaria, the by-product of hemoglobin digestion in infected red cells (hemozoin) is associated with the severity of anemia which is independent of circulating levels of the inflammatory cytokine tumor necrosis alpha (TNF-α). To gain insight into the common and specific effects of TNF-α and hemozoin on erythropoiesis, we studied the gene expression profile of purified primary erythroid cultures exposed to either TNF-α (10ng/ml) or to hemozoin (12.5μg/ml heme units) for 24 hours. Perturbed gene function was assessed using co-annotation of associated gene ontologies and expression of selected genes representative of the profile observed was confirmed by real time PCR (rtPCR). The changes in gene expression induced by each agent were largely distinct; many of the genes significantly modulated by TNF-α were not affected by hemozoin. The genes modulated by TNF-α were significantly enriched for those encoding proteins involved in the control of type 1 interferon signalling and the immune response to viral infection. In contrast, genes induced by hemozoin were significantly enriched for functional roles in regulation of transcription and apoptosis. Further analyses by rtPCR revealed that hemozoin increases expression of transcription factors that form part of the integrated stress response which is accompanied by reduced expression of genes involved in DNA repair. This study confirms that hemozoin induces cellular stress on erythroblasts that is additional to and distinct from responses to inflammatory cytokines and identifies new genes that may be involved in the pathogenesis of severe malarial anemia. More generally the respective transcription profiles highlight the varied mechanisms through which erythropoiesis may be disrupted during infectious disease.


BMC Genomics | 2016

Distinct gene expression program dynamics during erythropoiesis from human induced pluripotent stem cells compared with adult and cord blood progenitors

Alison T. Merryweather-Clarke; Alex J. Tipping; Abigail A. Lamikanra; Rui Fa; Basel Abu-Jamous; Hoi Pat Tsang; Lee Carpenter; Kathryn J. H. Robson; Asoke K. Nandi; David J. Roberts

BackgroundHuman-induced pluripotent stem cells (hiPSCs) are a potentially invaluable resource for regenerative medicine, including the in vitro manufacture of blood products. HiPSC-derived red blood cells are an attractive therapeutic option in hematology, yet exhibit unexplained proliferation and enucleation defects that presently preclude such applications. We hypothesised that substantial differential regulation of gene expression during erythroid development accounts for these important differences between hiPSC-derived cells and those from adult or cord-blood progenitors. We thus cultured erythroblasts from each source for transcriptomic analysis to investigate differential gene expression underlying these functional defects.ResultsOur high resolution transcriptional view of definitive erythropoiesis captures the regulation of genes relevant to cell-cycle control and confers statistical power to deploy novel bioinformatics methods. Whilst the dynamics of erythroid program elaboration from adult and cord blood progenitors were very similar, the emerging erythroid transcriptome in hiPSCs revealed radically different program elaboration compared to adult and cord blood cells. We explored the function of differentially expressed genes in hiPSC-specific clusters defined by our novel tunable clustering algorithms (SMART and Bi-CoPaM). HiPSCs show reduced expression of c-KIT and key erythroid transcription factors SOX6, MYB and BCL11A, strong HBZ-induction, and aberrant expression of genes involved in protein degradation, lysosomal clearance and cell-cycle regulation.ConclusionsTogether, these data suggest that hiPSC-derived cells may be specified to a primitive erythroid fate, and implies that definitive specification may more accurately reflect adult development. We have therefore identified, for the first time, distinct gene expression dynamics during erythroblast differentiation from hiPSCs which may cause reduced proliferation and enucleation of hiPSC-derived erythroid cells. The data suggest several mechanistic defects which may partially explain the observed aberrant erythroid differentiation from hiPSCs.


Experimental Hematology | 2016

A network including TGFβ/Smad4, Gata2, and p57 regulates proliferation of mouse hematopoietic progenitor cells

Matilda Billing; Emma Rörby; Gillian May; Alex J. Tipping; Shamit Soneji; John Brown; Marjo Salminen; Göran Karlsson; Tariq Enver; Stefan Karlsson

Transforming growth factor β (TGFβ) is a potent inhibitor of hematopoietic stem and progenitor cell proliferation. However, the precise mechanism for this effect is unknown. Here, we have identified the transcription factor Gata2, previously described as an important regulator of hematopoietic stem cell function, as an early and direct target gene for TGFβ-induced Smad signaling in hematopoietic progenitor cells. We also report that Gata2 is involved in mediating a significant part of the TGFβ response in primitive hematopoietic cells. Interestingly, the cell cycle regulator and TGFβ signaling effector molecule p57 was found to be upregulated as a secondary response to TGFβ. We observed Gata2 binding upstream of the p57 genomic locus, and importantly, loss of Gata2 abolished TGFβ-stimulated induction of p57 as well as the resulting growth arrest of hematopoietic progenitors. Our results connect key molecules involved in hematopoietic stem cell self-renewal and reveal a functionally relevant network, regulating proliferation of primitive hematopoietic cells.

Collaboration


Dive into the Alex J. Tipping's collaboration.

Top Co-Authors

Avatar

Tariq Enver

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gillian May

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina Pina

University College London

View shared research outputs
Top Co-Authors

Avatar

John Brown

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge