Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex K. Lancaster is active.

Publication


Featured researches published by Alex K. Lancaster.


Nature | 2012

Prions are a common mechanism for phenotypic inheritance in wild yeasts

Randal Halfmann; Daniel F. Jarosz; Sandra K. Jones; Amelia Chang; Alex K. Lancaster; Susan Lindquist

The self-templating conformations of yeast prion proteins act as epigenetic elements of inheritance. Yeast prions might provide a mechanism for generating heritable phenotypic diversity that promotes survival in fluctuating environments and the evolution of new traits. However, this hypothesis is highly controversial. Prions that create new traits have not been found in wild strains, leading to the perception that they are rare ‘diseases’ of laboratory cultivation. Here we biochemically test approximately 700 wild strains of Saccharomyces for [PSI+] or [MOT3+], and find these prions in many. They conferred diverse phenotypes that were frequently beneficial under selective conditions. Simple meiotic re-assortment of the variation harboured within a strain readily fixed one such trait, making it robust and prion-independent. Finally, we genetically screened for unknown prion elements. Fully one-third of wild strains harboured them. These, too, created diverse, often beneficial phenotypes. Thus, prions broadly govern heritable traits in nature, in a manner that could profoundly expand adaptive opportunities.


Human Immunology | 2008

Balancing selection and heterogeneity across the classical human leukocyte antigen loci: a meta-analytic review of 497 population studies

Owen D. Solberg; Steven J. Mack; Alex K. Lancaster; Richard M. Single; Yingssu Tsai; Alicia Sanchez-Mazas; Glenys Thomson

This paper presents a meta-analysis of high-resolution human leukocyte antigen (HLA) allele frequency data describing 497 population samples. Most of the datasets were compiled from studies published in eight journals from 1990 to 2007; additional datasets came from the International Histocompatibility Workshops and from the AlleleFrequencies.net database. In all, these data represent approximately 66,800 individuals from throughout the world, providing an opportunity to observe trends that may not have been evident at the time the data were originally analyzed, especially with regard to the relative importance of balancing selection among the HLA loci. Population genetic measures of allele frequency distributions were summarized across populations by locus and geographic region. A role for balancing selection maintaining much of HLA variation was confirmed. Further, the breadth of this meta-analysis allowed the ranking of the HLA loci, with DQA1 and HLA-C showing the strongest balancing selection and DPB1 being compatible with neutrality. Comparisons of the allelic spectra reported by studies since 1990 indicate that most of the HLA alleles identified since 2000 are very-low-frequency alleles. The literature-based allele-count data, as well as maps summarizing the geographic distributions for each allele, are available online.


Science | 2013

Yeast reveal a “druggable” Rsp5/Nedd4 Network that Ameliorates α–Synuclein Toxicity in Neurons

Daniel F. Tardiff; Nathan T. Jui; Vikram Khurana; Mitali A. Tambe; Michelle L. Thompson; Chee Yeun Chung; Hari B. Kamadurai; Hyoung Tae Kim; Alex K. Lancaster; Kim A. Caldwell; Guy A. Caldwell; Jean-Christophe Rochet; Stephen L. Buchwald; Susan Lindquist

From Yeast to Therapeutic? Yeast has shown some promise as a model system to generate lead compounds that could have therapeutic potential for the cellular problems associated with neurodegenerative diseases. Along these lines, Tardiff et al. (p. 979, published online 24 October) and Chung et al. (p. 983, published online 24 October) describe the results of multiple screens in yeast that lead to the identification of a potential therapeutic compound to combat the cytotoxic affect of α-synuclein accumulation. The compound was able to reverse the pathological hallmarks of Parkinsons disease in cultured neurons derived from patients with α-synuclein–induced Parkinsons disease dementia. Screening in yeast yields an effective therapeutic for Parkinson’s patient–derived neuronal stem cells. α-Synuclein (α-syn) is a small lipid-binding protein implicated in several neurodegenerative diseases, including Parkinson’s disease, whose pathobiology is conserved from yeast to man. There are no therapies targeting these underlying cellular pathologies, or indeed those of any major neurodegenerative disease. Using unbiased phenotypic screens as an alternative to target-based approaches, we discovered an N-aryl benzimidazole (NAB) that strongly and selectively protected diverse cell types from α-syn toxicity. Three chemical genetic screens in wild-type yeast cells established that NAB promoted endosomal transport events dependent on the E3 ubiquitin ligase Rsp5/Nedd4. These same steps were perturbed by α-syn itself. Thus, NAB identifies a druggable node in the biology of α-syn that can correct multiple aspects of its underlying pathology, including dysfunctional endosomal and endoplasmic reticulum–to-Golgi vesicle trafficking.


pacific symposium on biocomputing | 2002

PyPop: a software framework for population genomics: analyzing large-scale multi-locus genotype data.

Alex K. Lancaster; Mark P. Nelson; Diogo Meyer; Richard M. Single; Glenys Thomson

Software to analyze multi-locus genotype data for entire populations is useful for estimating haplotype frequencies, deviation from Hardy-Weinberg equilibrium and patterns of linkage disequilibrium. These statistical results are important to both those interested in human genome variation and disease predisposition as well as evolutionary genetics. As part of the 13th International Histocompatibility and Immunogenetics Working Group (IHWG), we have developed a software framework (PyPop). The primary novelty of this package is that it allows integration of statistics across large numbers of data-sets by heavily utilizing the XML file format and the R statistical package to view graphical output, while retaining the ability to inter-operate with existing software. Largely developed to address human population data, it can, however, be used for population based data for any organism. We tested our software on the data from the 13th IHWG which involved data sets from at least 50 laboratories each of up to 1000 individuals with 9 MHC loci (both class I and class II) and found that it scales to large numbers of data sets well.


Cell | 2013

Heritable Remodeling of Yeast Multicellularity by an Environmentally Responsive Prion

Daniel L. Holmes; Alex K. Lancaster; Susan Lindquist; Randal Halfmann

Prion proteins undergo self-sustaining conformational conversions that heritably alter their activities. Many of these proteins operate at pivotal positions in determining how genotype is translated into phenotype. But the breadth of prion influences on biology and their evolutionary significance are just beginning to be explored. We report that a prion formed by the Mot3 transcription factor, [MOT3(+)], governs the acquisition of facultative multicellularity in the budding yeast Saccharomyces cerevisiae. The traits governed by [MOT3(+)] involved both gains and losses of Mot3 regulatory activity. [MOT3(+)]-dependent expression of FLO11, a major determinant of cell-cell adhesion, produced diverse lineage-specific multicellular phenotypes in response to nutrient deprivation. The prions themselves were induced by ethanol and eliminated by hypoxia-conditions that occur sequentially in the natural respiro-fermentative cycles of yeast populations. These data demonstrate that prions can act as environmentally responsive molecular determinants of multicellularity and contribute to the natural morphological diversity of budding yeast.


Genetics | 2010

The spontaneous appearance rate of the yeast prion [PSI+] and its implications for the evolution of the evolvability properties of the [PSI+] system.

Alex K. Lancaster; J. Patrick Bardill; Heather L. True; Joanna Masel

Epigenetically inherited aggregates of the yeast prion [PSI+] cause genomewide readthrough translation that sometimes increases evolvability in certain harsh environments. The effects of natural selection on modifiers of [PSI+] appearance have been the subject of much debate. It seems likely that [PSI+] would be at least mildly deleterious in most environments, but this may be counteracted by its evolvability properties on rare occasions. Indirect selection on modifiers of [PSI+] is predicted to depend primarily on the spontaneous [PSI+] appearance rate, but this critical parameter has not previously been adequately measured. Here we measure this epimutation rate accurately and precisely as 5.8 × 10−7 per generation, using a fluctuation test. We also determine that genetic “mimics” of [PSI+] account for up to 80% of all phenotypes involving general nonsense suppression. Using previously developed mathematical models, we can now infer that even in the absence of opportunities for adaptation, modifiers of [PSI+] are only weakly deleterious relative to genetic drift. If we assume that the spontaneous [PSI+] appearance rate is at its evolutionary optimum, then opportunities for adaptation are inferred to be rare, such that the [PSI+] system is favored only very weakly overall. But when we account for the observed increase in the [PSI+] appearance rate in response to stress, we infer much higher overall selection in favor of [PSI+] modifiers, suggesting that [PSI+]-forming ability may be a consequence of selection for evolvability.


Bioinformatics | 2014

PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition

Alex K. Lancaster; Andrew Nutter-Upham; Susan Lindquist; Oliver D. King

UNLABELLED Prions are self-templating protein aggregates that stably perpetuate distinct biological states and are of keen interest to researchers in both evolutionary and biomedical science. The best understood prions are from yeast and have a prion-forming domain with strongly biased amino acid composition, most notably enriched for Q or N. PLAAC is a web application that scans protein sequences for domains with P: rion- L: ike A: mino A: cid C: omposition. Users can upload sequence files, or paste sequences directly into a textbox. PLAAC ranks the input sequences by several summary scores and allows scores along sequences to be visualized. Text output files can be downloaded for further analyses, and visualizations saved in PDF and PNG formats. AVAILABILITY AND IMPLEMENTATION http://plaac.wi.mit.edu/. The Ruby-based web framework and the command-line software (implemented in Java, with visualization routines in R) are available at http://github.com/whitehead/plaac under the MIT license. All software can be run under OS X, Windows and Unix.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Luminidependens (LD) is an Arabidopsis protein with prion behavior

Sohini Chakrabortee; Can Kayatekin; Greg A. Newby; Marc L. Mendillo; Alex K. Lancaster; Susan Lindquist

Significance Prion proteins provide the best-understood mode for protein-based molecular memory. Since their discovery in mammals, prions have been identified in diverse organisms including fungi, Aplysia, and Drosophila, but not in the plant kingdom. Applying methods we used to uncover yeast prions, we identified nearly 500 Arabidopsis proteins that harbor potential prion-like domains (PrDs). At least one of these domains, Luminidependens PrD, had some of the classical characteristics of prion proteins when tested experimentally in yeast, making it, to our knowledge, the first protein from the plant kingdom with bona fide prion attributes. Importantly, Luminidependens is involved in the process of flowering, a crucial development course that integrates several internal and external cues, including memories of winter, for its regulation. Prion proteins provide a unique mode of biochemical memory through self-perpetuating changes in protein conformation and function. They have been studied in fungi and mammals, but not yet identified in plants. Using a computational model, we identified candidate prion domains (PrDs) in nearly 500 plant proteins. Plant flowering is of particular interest with respect to biological memory, because its regulation involves remembering and integrating previously experienced environmental conditions. We investigated the prion-forming capacity of three prion candidates involved in flowering using a yeast model, where prion attributes are well defined and readily tested. In yeast, prions heritably change protein functions by templating monomers into higher-order assemblies. For most yeast prions, the capacity to convert into a prion resides in a distinct prion domain. Thus, new prion-forming domains can be identified by functional complementation of a known prion domain. The prion-like domains (PrDs) of all three of the tested proteins formed higher-order oligomers. Uniquely, the Luminidependens PrD (LDPrD) fully replaced the prion-domain functions of a well-characterized yeast prion, Sup35. Our results suggest that prion-like conformational switches are evolutionarily conserved and might function in a wide variety of normal biological processes.


BMC Genomics | 2014

Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit

Thomas H. Clarke; Jessica E. Garb; Cheryl Y. Hayashi; Robert A. Haney; Alex K. Lancaster; Susan Corbett; Nadia A. Ayoub

BackgroundSpiders (Order Araneae) are essential predators in every terrestrial ecosystem largely because they have evolved potent arsenals of silk and venom. Spider silks are high performance materials made almost entirely of proteins, and thus represent an ideal system for investigating genome level evolution of novel protein functions. However, genomic level resources remain limited for spiders.ResultsWe de novo assembled a transcriptome for the Western black widow (Latrodectus hesperus) from deeply sequenced cDNAs of three tissue types. Our multi-tissue assembly contained ~100,000 unique transcripts, of which > 27,000 were annotated by homology. Comparing transcript abundance among the different tissues, we identified 647 silk gland-specific transcripts, including the few known silk fiber components (e.g. six spider fibroins, spidroins). Silk gland specific transcripts are enriched compared to the entire transcriptome in several functions, including protein degradation, inhibition of protein degradation, and oxidation-reduction. Phylogenetic analyses of 37 gene families containing silk gland specific transcripts demonstrated novel gene expansions within silk glands, and multiple co-options of silk specific expression from paralogs expressed in other tissues.ConclusionsWe propose a transcriptional program for the silk glands that involves regulating gland specific synthesis of silk fiber and glue components followed by protecting and processing these components into functional fibers and glues. Our black widow silk gland gene repertoire provides extensive expansion of resources for biomimetic applications of silk in industry and medicine. Furthermore, our multi-tissue transcriptome facilitates evolutionary analysis of arachnid genomes and adaptive protein systems.


Evolution | 2009

The evolution of reversible switches in the presence of irreversible mimics

Alex K. Lancaster; Joanna Masel

Reversible phenotypic switching can be caused by a number of different mechanisms including epigenetic inheritance systems and DNA-based contingency loci. Previous work has shown that reversible switching systems may be favored by natural selection. Many switches can be characterized as “on/off” where the “off” state constitutes a temporary and reversible loss of function. Loss-of-function phenotypes corresponding to the “off” state can be produced in many different ways, all yielding identical fitness in the short term. In the long term, however, a switch-induced loss of function can be reversed, whereas many loss-of-f unction mutations, especially deletions, cannot. We refer to these loss-of-function mutations as “irreversible mimics” of the reversible switch. Here, we develop a model in which a reversible switch evolves in the presence of both irreversible mimics and metapopulation structure. We calculate that when the rate of appearance of irreversible mimics exceeds the migration rate, the evolved reversible switching rate will exceed the bet-hedging rate predicted by panmictic models.

Collaboration


Dive into the Alex K. Lancaster's collaboration.

Top Co-Authors

Avatar

Susan Lindquist

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Glenys Thomson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven J. Mack

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar

Mark P. Nelson

University of California

View shared research outputs
Top Co-Authors

Avatar

Diogo Meyer

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Luke Whitesell

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Vincent

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge