Alex Kutana
Rice University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alex Kutana.
Nano Letters | 2016
Evgeni S. Penev; Alex Kutana; Boris I. Yakobson
Two-dimensional boron is expected to exhibit various structural polymorphs, all being metallic. Additionally, its small atomic mass suggests strong electron-phonon coupling, which in turn can enable superconducting behavior. Here we perform first-principles analysis of electronic structure, phonon spectra, and electron-phonon coupling of selected 2D boron polymorphs and show that the most stable structures predicted to feasibly form on a metal substrate should also exhibit intrinsic phonon-mediated superconductivity, with estimated critical temperature in the range of Tc ≈ 10-20 K.
Journal of Physical Chemistry Letters | 2014
Mingjie Liu; Alex Kutana; Yuanyue Liu; Boris I. Yakobson
We study the Li clustering process on graphene and obtain the geometry, nucleation barrier, and electronic structure of the clusters using first-principles calculations. We estimate the concentration-dependent nucleation barrier for Li on graphene. While the nucleation occurs more readily with increasing Li concentration, possibly leading to the dendrite formation and failure of the Li-ion battery, the existence of the barrier delays nucleation and may allow Li storage on graphene. Our electronic structure and charge transfer analyses reveal how the fully ionized Li adatoms transform to metallic Li during the cluster growth on graphene.
Journal of Physical Chemistry Letters | 2015
Zhiming Shi; Alex Kutana; Boris I. Yakobson
Doped, substituted, or alloyed graphene is an attractive candidate for use as a tunable element of future nanomechanical and optoelectronic devices. Here we use the density functional theory, density functional tight binding, cluster expansion, and molecular dynamics to investigate the thermal stability and electronic properties of a binary 2D alloy of graphitic carbon and nitrogen (C(1-x)N(x)). The stability range naturally begins from graphene and must end before x = 1, where pure nitrogen rather forms molecular gas. This poses a compelling question of what highest x < 1 still permits stable 2D hexagonal lattice. Such upper limit on the nitrogen concentration that is achievable in a stable alloy can be found based on the phonon and molecular dynamics calculations. The stability switchover is predicted to between x = 1/3 (33.3%) and x = 3/8 (37.5%), and no stable hexagonal lattice two-dimensional CN alloys can exist at the N concentration of x = 3/8 (37.5%) and higher.
Nano Letters | 2016
Henry Yu; Alex Kutana; Boris I. Yakobson
With the lateral coplanar heterojunctions of two-dimensional monolayer materials turning into reality, the quantitative understanding of their electronic, electrostatic, doping, and scaling properties becomes imperative. In contrast to traditional bulk 3D junctions where carrier equilibrium is reached through local charge redistribution, a highly nonlocalized charge transfer (trailing off as 1/x away from the interface) is present in lateral 2D junctions, increasing the junction size considerably. The depletion width scales as p(-1), while the differential capacitance varies very little with the doping level p. The properties of lateral 2D junctions are further quantified through numerical analysis of realistic materials, with graphene, MoS2, and their hybrid serving as examples. Careful analysis of the built-in potential profile shows strong reduction of Fermi level pinning, suggesting better control of the barrier in 2D metal-semiconductor junctions.
Annalen der Physik | 2014
Luqing Wang; Alex Kutana; Boris I. Yakobson
Monolayer transition metal dichalcogenides are promising materials for photoelectronic devices. Among them, molybdenum disulphide (MoS2) and tungsten disulphide (WS2) are some of the best candidates due to their favorable band gap values and band edge alignments. Here, various perturbative corrections to the DFT electronic structure, e.g. GW, spin-orbit coupling, as well as many-body excitonic and trionic effects are considered, and accurate band gaps as a function of homogeneous biaxial strain in these materials are calculated. All of these corrections are shown to be of comparable magnitudes and need to be included in order to obtain an accurate electronic structure. The strain at which the direct-to-indirect gap transition occurs is calculated. After considering all contributions, the direct to indirect gap transition strain is predicted to be at 2.7% in MoS2 and 3.9% in WS2. These values are generally higher than the previously reported theoretical values.
Advanced Materials | 2017
Sandhya Susarla; Alex Kutana; Jordan A. Hachtel; Vidya Kochat; Amey Apte; Robert Vajtai; Juan Carlos Idrobo; Boris I. Yakobson; Chandra Sekhar Tiwary; Pulickel M. Ajayan
Alloying/doping in 2D material is important due to wide range bandgap tunability. Increasing the number of components would increase the degree of freedom which can provide more flexibility in tuning the bandgap and also reduces the growth temperature. Here, synthesis of quaternary alloys Mox W1-x S2y Se2(1-y) is reported using chemical vapor deposition. The composition of alloys is tuned by changing the growth temperatures. As a result, the bandgap can be tuned which varies from 1.61 to 1.85 eV. The detailed theoretical calculation supports the experimental observation and shows a possibility of wide tunability of bandgap.
Journal of Materials Chemistry C | 2017
Jincheng Lei; Alex Kutana; Boris I. Yakobson
Two-dimensional (2D) superconductors have attracted great attention in recent years due to the possibility of new phenomena in lower dimensions. With many bulk transition metal carbides being well-known conventional superconductors, here we perform first-principles calculations to evaluate the possible superconductivity in a 2D monolayer Mo2C. Three candidate structures (monolayer alpha-Mo2C, 1T MXene-Mo2C, and 2H MXene-Mo2C) are considered and the most stable form is found to be 2H MXene-Mo2C. Electronic structure calculations indicate that both unpassivated and passivated 2H forms exhibit metallic properties. We obtain phonon frequencies and electron–phonon couplings using density-functional perturbation theory, and based on the BCS theory and the McMillan equation, estimate the critical temperatures to be in the ∼0–13 K range, depending on the species of surface termination (O, H and OH). The optimal termination group is H, which can increase the electron–phonon coupling and bring the critical temperature to 13 K. This shows a rather high critical temperature, tunable by surface termination, making this 2D carbide an interesting test bed for low-dimensional superconductivity.
ACS Nano | 2018
Mitsuhiro Okada; Alex Kutana; Yusuke Kureishi; Yu Kobayashi; Yuika Saito; Tetsuki Saito; Kenji Watanabe; Takashi Taniguchi; Sunny Gupta; Yasumitsu Miyata; Boris I. Yakobson; Hisanori Shinohara; Ryo Kitaura
A van der Waals (vdW) heterostructure composed of multivalley systems can show excitonic optical responses from interlayer excitons that originate from several valleys in the electronic structure. In this work, we studied photoluminescence (PL) from a vdW heterostructure, WS2/MoS2, deposited on hexagonal boron nitride (hBN) flakes. PL spectra from the fabricated heterostructures observed at room temperature show PL peaks at 1.3-1.7 eV, which are absent in the PL spectra of WS2 or MoS2 monolayers alone. The low-energy PL peaks we observed can be decomposed into three distinct peaks. Through detailed PL measurements and theoretical analysis, including PL imaging, time-resolved PL measurements, and calculation of dielectric function ε(ω) by solving the Bethe-Salpeter equation with G0 W0, we concluded that the three PL peaks originate from direct K-K interlayer excitons, indirect Q-Γ interlayer excitons, and indirect K-Γ interlayer excitons.
Advanced Materials | 2018
Sandhya Susarla; Jordan A. Hachtel; Xiting Yang; Alex Kutana; Amey Apte; Zehua Jin; Robert Vajtai; Juan Carlos Idrobo; Jun Lou; Boris I. Yakobson; Chandra Sekhar Tiwary; Pulickel M. Ajayan
Composition and phase specific 2D transition metal dichalogenides (2D TMDs) with a controlled electronic and chemical structure are essential for future electronics. While alloying allows bandgap tunability, heterostructure formation creates atomically sharp electronic junctions. Herein, the formation of lateral heterostructures from quaternary 2D TMD alloys, by thermal annealing, is demonstrated. Phase separation is observed through photoluminescence and Raman spectroscopy, and the sharp interface of the lateral heterostructure is examined via scanning transmission electron microscopy. The composition-dependent transformation is caused by existence of miscibility gap in the quaternary alloys. The phase diagram displaying the miscibility gap is obtained from the reciprocal solution model based on density functional theory and verified experimentally. The experiments show direct evidence of composition-driven heterostructure formation in 2D atomic layer systems.
ACS Nano | 2018
Sunny Gupta; Sharmila N. Shirodkar; Alex Kutana; Boris I. Yakobson
Despite being only a few atoms thick, single-layer two-dimensional (2D) materials display strong electron-photon interactions that could be utilized in efficient light modulators on extreme subwavelength scales. In various applications involving light modulation and manipulation, materials with strong optical response at different wavelengths are required. Using qualitative analytical modeling and first-principles calculations, we determine the theoretical limit of the maximum optical response such as absorbance ( A) and reflectance ( R) in 2D materials and also conduct a computational survey to seek out those with best A and R in various frequency ranges, from mid-infrared to deep-ultraviolet. We find that 2D boron has broadband reflectance R > 99% for >100 layers, surpassing conventional thin films of bulk metals such as silver. Moreover, we identify 2D monolayer semiconductors with maximum response, for which we obtain quantitative estimates by calculating quasiparticle energies and accounting for excitonic effects by solving the Bethe-Salpeter equation. We found several monolayer semiconductors with absorbances ≳30% in different optical ranges, which are more than half of the maximum possible value, Alim = 1/2, for a freestanding 2D material. Our study predicts 2D materials which can potentially be used in ultrathin reflectors and absorbers for optoelectronic application in various frequency ranges.