Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex Magee is active.

Publication


Featured researches published by Alex Magee.


American Journal of Human Genetics | 2006

Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome.

Tjitske Kleefstra; Han G. Brunner; Jeanne Amiel; Astrid R. Oudakker; Willy M. Nillesen; Alex Magee; David Geneviève; Valérie Cormier-Daire; Hilde Van Esch; Jean-Pierre Fryns; B.C.J. Hamel; Erik A. Sistermans; Bert B.A. de Vries; Hans van Bokhoven

A clinically recognizable 9q subtelomeric deletion syndrome has recently been established. Common features seen in these patients are severe mental retardation, hypotonia, brachycephaly, flat face with hypertelorism, synophrys, anteverted nares, cupid bow or tented upper lip, everted lower lip, prognathism, macroglossia, conotruncal heart defects, and behavioral problems. The minimal critical region responsible for this 9q subtelomeric deletion (9q-) syndrome has been estimated to be <1 Mb and comprises the euchromatin histone methyl transferase 1 gene (EHMT1). Previous studies suggested that haploinsufficiency for EHMT1 is causative for 9q subtelomeric deletion syndrome. We have performed a comprehensive mutation analysis of the EHMT1 gene in 23 patients with clinical presentations reminiscent of 9q subtelomeric deletion syndrome. This analysis revealed three additional microdeletions that comprise the EHMT1 gene, including one interstitial deletion that reduces the critical region for this syndrome. Most importantly, we identified two de novo mutations--a nonsense mutation and a frameshift mutation--in the EHMT1 gene in patients with a typical 9q- phenotype. These results establish that haploinsufficiency of EHMT1 is causative for 9q subtelomeric deletion syndrome.


Nature Genetics | 2012

Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome

Jeroen Van Houdt; Beata Nowakowska; Sérgio B. de Sousa; Barbera D. C. van Schaik; Eve Seuntjens; Nelson Avonce; Alejandro Sifrim; Omar A. Abdul-Rahman; Marie Jose H. van den Boogaard; Armand Bottani; Marco Castori; Valérie Cormier-Daire; Matthew A. Deardorff; Isabel Filges; Alan Fryer; Jean Pierre Fryns; Simone Gana; Livia Garavelli; Gabriele Gillessen-Kaesbach; Bryan D. Hall; Denise Horn; Danny Huylebroeck; Jakub Klapecki; Małgorzata Krajewska-Walasek; Alma Kuechler; Saskia M. Maas; Kay D. MacDermot; Shane McKee; Alex Magee; Stella A. de Man

Nicolaides-Baraitser syndrome (NBS) is characterized by sparse hair, distinctive facial morphology, distal-limb anomalies and intellectual disability. We sequenced the exomes of ten individuals with NBS and identified heterozygous variants in SMARCA2 in eight of them. Extended molecular screening identified nonsynonymous SMARCA2 mutations in 36 of 44 individuals with NBS; these mutations were confirmed to be de novo when parental samples were available. SMARCA2 encodes the core catalytic unit of the SWI/SNF ATP-dependent chromatin remodeling complex that is involved in the regulation of gene transcription. The mutations cluster within sequences that encode ultra-conserved motifs in the catalytic ATPase region of the protein. These alterations likely do not impair SWI/SNF complex assembly but may be associated with disrupted ATPase activity. The identification of SMARCA2 mutations in humans provides insight into the function of the Snf2 helicase family.


Annals of Neurology | 2006

AHI1 gene mutations cause specific forms of Joubert syndrome–related disorders

Enza Maria Valente; Francesco Brancati; Jennifer L. Silhavy; Marco Castori; Sarah E. Marsh; Giuseppe Barrano; Enrico Bertini; Eugen Boltshauser; Maha S. Zaki; Alice Abdel-Aleem; Ghada M. H. Abdel-Salam; Emanuele Bellacchio; Roberta Battini; Robert P. Cruse; William B. Dobyns; Kalpathy S. Krishnamoorthy; Clotilde Lagier-Tourenne; Alex Magee; Ignacio Pascual-Castroviejo; Carmelo Salpietro; Dean Sarco; Bruno Dallapiccola; Joseph G. Gleeson

Joubert syndrome (JS) is a recessively inherited developmental brain disorder with several identified causative chromosomal loci. It is characterized by hypoplasia of the cerebellar vermis and a particular midbrain‐hindbrain “molar tooth” sign, a finding shared by a group of Joubert syndrome–related disorders (JSRDs), with wide phenotypic variability. The frequency of mutations in the first positionally cloned gene, AHI1, is unknown.


European Journal of Human Genetics | 2012

How genetically heterogeneous is Kabuki syndrome?: MLL2 testing in 116 patients, review and analyses of mutation and phenotypic spectrum

Siddharth Banka; Ratna Veeramachaneni; William Reardon; Emma Howard; Sancha Bunstone; Nicola Ragge; Michael J. Parker; Yanick J. Crow; Bronwyn Kerr; Helen Kingston; Kay Metcalfe; Kate Chandler; Alex Magee; Fiona Stewart; Vivienne McConnell; Deirdre E. Donnelly; Siren Berland; Gunnar Houge; Jenny Morton; Christine Oley; Nicole Revencu; Soo Mi Park; Sally Davies; Andrew E. Fry; Sally Ann Lynch; Harinder Gill; Susann Schweiger; Wayne W K Lam; John Tolmie; Shehla Mohammed

MLL2 mutations are detected in 55 to 80% of patients with Kabuki syndrome (KS). In 20 to 45% patients with KS, the genetic basis remains unknown, suggesting possible genetic heterogeneity. Here, we present the largest yet reported cohort of 116 patients with KS. We identified MLL2 variants in 74 patients, of which 47 are novel and a majority are truncating. We show that pathogenic missense mutations were commonly located in exon 48. We undertook a systematic facial KS morphology study of patients with KS at our regional dysmorphology meeting. Our data suggest that nearly all patients with typical KS facial features have pathogenic MLL2 mutations, although KS can be phenotypically variable. Furthermore, we show that MLL2 mutation-positive KS patients are more likely to have feeding problems, kidney anomalies, early breast bud development, joint dislocations and palatal malformations in comparison with MLL2 mutation-negative patients. Our work expands the mutation spectrum of MLL2 that may help in better understanding of this molecule, which is important in gene expression, epigenetic control of active chromatin states, embryonic development and cancer. Our analyses of the phenotype indicates that MLL2 mutation-positive and -negative patients differ systematically, and genetic heterogeneity of KS is not as extensive as previously suggested. Moreover, phenotypic variability of KS suggests that MLL2 testing should be considered even in atypical patients.


Journal of Medical Genetics | 2008

Clinical and molecular characteristics of 1qter microdeletion syndrome: delineating a critical region for corpus callosum agenesis/hypogenesis

B.W.M. van Bon; David A. Koolen; Renato Borgatti; Alex Magee; S. Garcia-Minaur; Liesbeth Rooms; Willie Reardon; Marcella Zollino; Maria Clara Bonaglia; M. De Gregori; Francesca Novara; R. Grasso; Roberto Ciccone; H.A. van Duyvenvoorde; A.M. Aalbers; Renzo Guerrini; Elisa Fazzi; Willy M. Nillesen; S. McCullough; Sarina G. Kant; Carlo Marcelis; R.P. Pfundt; N. de Leeuw; Dominique Smeets; Erik A. Sistermans; Jan M. Wit; B.C.J. Hamel; Han G. Brunner; Frank Kooy; Orsetta Zuffardi

Background: Patients with a microscopically visible deletion of the distal part of the long arm of chromosome 1 have a recognisable phenotype, including mental retardation, microcephaly, growth retardation, a distinct facial appearance and various midline defects including corpus callosum abnormalities, cardiac, gastro-oesophageal and urogenital defects, as well as various central nervous system anomalies. Patients with a submicroscopic, subtelomeric 1qter deletion have a similar phenotype, suggesting that the main phenotype of these patients is caused by haploinsufficiency of genes in this region. Objective: To describe the clinical presentation of 13 new patients with a submicroscopic deletion of 1q43q44, of which nine were interstitial, and to report on the molecular characterisation of the deletion size. Results and conclusions: The clinical presentation of these patients has clear similarities with previously reported cases with a terminal 1q deletion. Corpus callosum abnormalities were present in 10 of our patients. The AKT3 gene has been reported as an important candidate gene causing this abnormality. However, through detailed molecular analysis of the deletion sizes in our patient cohort, we were able to delineate the critical region for corpus callosum abnormalities to a 360 kb genomic segment which contains four possible candidate genes, but excluding the AKT3 gene.


American Journal of Medical Genetics Part A | 2008

Familial CHARGE syndrome and the CHD7 gene: a recurrent missense mutation, intrafamilial recurrence and variability.

Marjolijn C.J. Jongmans; Lies H. Hoefsloot; Kim P. van der Donk; Ronald J.C. Admiraal; Alex Magee; Ingrid van de Laar; Yvonne Hendriks; Joke B. G. M. Verheij; Ian Walpole; Han G. Brunner; Conny van Ravenswaaij

CHARGE syndrome is an autosomal dominant condition that is caused by mutations in the CHD7 gene. Few familial cases of this syndrome have been reported and these were characterized by a wide clinical variability. We here report on five CHD7 mutation positive families and comment on their clinical features. We observed somatic and germline mosaicism as well as parent‐to‐child transmission of non‐mosaic CHD7 mutations as causes of familial CHARGE syndrome. In one family with two affected sibs a somatic mutation was identified in lymphocytes of a clinically unaffected parent (2520G > A in exon 8). This is the second report of somatic CHD7 mosaicism in an unaffected parent. In two further families with affected siblings, we could not detect the mutation in parental lymphocytes suggesting germline mosaicism. The previously reported clinical variability was strikingly present in all five families. We find that alterations in CHD7 can result in a very mild phenotype, characterized by only a few minor symptoms of the CHARGE syndrome clinical spectrum. Such a mild phenotype was present in two families that shared the same 6322G > A missense mutation. These two families showed parent‐to‐child transmission. Phenotypically milder forms of CHARGE syndrome have a higher risk of transmission to multiple family members.


Journal of Medical Genetics | 2014

Genetic heterogeneity in Cornelia de Lange syndrome (CdLS) and CdLS-like phenotypes with observed and predicted levels of mosaicism

Morad Ansari; G Poke; Quentin Rv Ferry; Kathleen A. Williamson; R. B. Aldridge; Alison Meynert; Hemant Bengani; C Y Chan; Hülya Kayserili; Ş Avci; Hennekam Rcm.; Anne K. Lampe; Egbert J. W. Redeker; Tessa Homfray; Allyson Ross; M F Smeland; Sahar Mansour; Michael J. Parker; Jackie Cook; Miranda Splitt; Robert B. Fisher; Alan Fryer; Alex Magee; Andrew O.M. Wilkie; A. Barnicoat; Angela F. Brady; Nicola S. Cooper; Catherine Mercer; Charu Deshpande; Christopher Bennett

Background Cornelia de Lange syndrome (CdLS) is a multisystem disorder with distinctive facial appearance, intellectual disability and growth failure as prominent features. Most individuals with typical CdLS have de novo heterozygous loss-of-function mutations in NIPBL with mosaic individuals representing a significant proportion. Mutations in other cohesin components, SMC1A, SMC3, HDAC8 and RAD21 cause less typical CdLS. Methods We screened 163 affected individuals for coding region mutations in the known genes, 90 for genomic rearrangements, 19 for deep intronic variants in NIPBL and 5 had whole-exome sequencing. Results Pathogenic mutations [including mosaic changes] were identified in: NIPBL 46 [3] (28.2%); SMC1A 5 [1] (3.1%); SMC3 5 [1] (3.1%); HDAC8 6 [0] (3.6%) and RAD21 1 [0] (0.6%). One individual had a de novo 1.3 Mb deletion of 1p36.3. Another had a 520 kb duplication of 12q13.13 encompassing ESPL1, encoding separase, an enzyme that cleaves the cohesin ring. Three de novo mutations were identified in ANKRD11 demonstrating a phenotypic overlap with KBG syndrome. To estimate the number of undetected mosaic cases we used recursive partitioning to identify discriminating features in the NIPBL-positive subgroup. Filtering of the mutation-negative group on these features classified at least 18% as ‘NIPBL-like’. A computer composition of the average face of this NIPBL-like subgroup was also more typical in appearance than that of all others in the mutation-negative group supporting the existence of undetected mosaic cases. Conclusions Future diagnostic testing in ‘mutation-negative’ CdLS thus merits deeper sequencing of multiple DNA samples derived from different tissues.


American Journal of Medical Genetics Part A | 2013

Weaver syndrome and EZH2 mutations: Clarifying the clinical phenotype

Katrina Tatton-Brown; Anne Murray; Sandra Hanks; Jenny Douglas; Ruth Armstrong; Siddharth Banka; Lynne M. Bird; Carol L. Clericuzio; Valérie Cormier-Daire; Tom Cushing; Frances Flinter; Marie Line Jacquemont; Shelagh Joss; Esther Kinning; Sally Ann Lynch; Alex Magee; Vivienne McConnell; Ana Medeira; Keiichi Ozono; Michael A. Patton; Julia Rankin; Debbie Shears; Marleen Simon; Miranda Splitt; Volker Strenger; Kyra Stuurman; Clare Taylor; Hannah Titheradge; Lionel Van Maldergem; I. Karen Temple

Weaver syndrome, first described in 1974, is characterized by tall stature, a typical facial appearance, and variable intellectual disability. In 2011, mutations in the histone methyltransferase, EZH2, were shown to cause Weaver syndrome. To date, we have identified 48 individuals with EZH2 mutations. The mutations were primarily missense mutations occurring throughout the gene, with some clustering in the SET domain (12/48). Truncating mutations were uncommon (4/48) and only identified in the final exon, after the SET domain. Through analyses of clinical data and facial photographs of EZH2 mutation‐positive individuals, we have shown that the facial features can be subtle and the clinical diagnosis of Weaver syndrome is thus challenging, especially in older individuals. However, tall stature is very common, reported in >90% of affected individuals. Intellectual disability is also common, present in ∼80%, but is highly variable and frequently mild. Additional clinical features which may help in stratifying individuals to EZH2 mutation testing include camptodactyly, soft, doughy skin, umbilical hernia, and a low, hoarse cry. Considerable phenotypic overlap between Sotos and Weaver syndromes is also evident. The identification of an EZH2 mutation can therefore provide an objective means of confirming a subtle presentation of Weaver syndrome and/or distinguishing Weaver and Sotos syndromes. As mutation testing becomes increasingly accessible and larger numbers of EZH2 mutation‐positive individuals are identified, knowledge of the clinical spectrum and prognostic implications of EZH2 mutations should improve.


American Journal of Medical Genetics Part A | 2009

Nicolaides-Baraitser syndrome: Delineation of the phenotype.

Sérgio B. Sousa; Omar A. Abdul-Rahman; Armand Bottani; Valérie Cormier-Daire; Alan Fryer; Gabriele Gillessen-Kaesbach; Denise Horn; Dragana Josifova; Alma Kuechler; Melissa Lees; Kay D. MacDermot; Alex Magee; Fanny Morice-Picard; Elizabeth Rosser; Ajoy Sarkar; Nora Shannon; Irene Stolte-Dijkstra; Alain Verloes; Emma Wakeling; Louise C. Wilson; Raoul C. M. Hennekam

Nicolaides–Baraitser syndrome (NBS) is an infrequently described condition, thus far reported in five cases. In order to delineate the phenotype and its natural history in more detail, we gathered data on 18 hitherto unreported patients through a multi‐center collaborative study, and follow‐up data of the earlier reported patients. A detailed comparison of the 23 patients is provided. NBS is a distinct and recognizable entity, and probably has been underdiagnosed until now. Main clinical features are severe mental retardation with absent or limited speech, seizures, short stature, sparse hair, typical facial characteristics, brachydactyly, prominent finger joints and broad distal phalanges. Some of the features are progressive with time. The main differential diagnosis is Coffin–Siris syndrome. There is no important gender difference in occurrence and frequency of the syndrome, and all cases have been sporadic thus far. Microarray analysis performed in 14 of the patients gave normal results. Except for the progressive nature there are no clues to the cause.


Journal of Medical Genetics | 2014

Whole exome sequencing in family trios reveals de novo mutations in PURA as a cause of severe neurodevelopmental delay and learning disability

David Hunt; Richard J. Leventer; Cas Simons; Ryan J. Taft; Kathryn J. Swoboda; Mary L Gawne-Cain; Alex Magee; Perter D. Turnpenny; Diana Baralle

Background De novo mutations are emerging as an important cause of neurocognitive impairment, and whole exome sequencing of case-parent trios is a powerful way of detecting them. Here, we report the findings in four such trios. Methods The Deciphering Developmental Disorders study is using whole exome sequencing in family trios to investigate children with severe, sporadic, undiagnosed developmental delay. Three of our patients were ascertained from the first 1133 children to have been investigated through this large-scale study. Case 4 was a phenotypically isolated case recruited into an undiagnosed rare disorders sequencing study. Results Protein-altering de novo mutations in PURA were identified in four subjects. They include two different frameshifts, one inframe deletion and one missense mutation. PURA encodes Pur-α, a highly conserved multifunctional protein that has an important role in normal postnatal brain development in animal models. The associated human phenotype of de novo heterozygous mutations in this gene is variable, but moderate to severe neurodevelopmental delay and learning disability are common to all. Neonatal hypotonia, early feeding difficulties and seizures, or ‘seizure-like’ movements, were also common. Additionally, it is suspected that anterior pituitary dysregulation may be within the spectrum of this disorder. Psychomotor developmental outcomes appear variable between patients, and we propose a possible genotype–phenotype correlation, with disruption of Pur repeat III resulting in a more severe phenotype. Conclusions These findings provide definitive evidence for the role of PURA in causing a variable syndrome of neurodevelopmental delay, learning disability, neonatal hypotonia, feeding difficulties, abnormal movements and epilepsy in humans, and help clarify the role of PURA in the previously described 5q31.3 microdeletion phenotype.

Collaboration


Dive into the Alex Magee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Fryer

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Erik A. Sistermans

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Han G. Brunner

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Martina C. Cornel

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frances Flinter

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Andrew N. Freedman

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge