Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex R. Wade is active.

Publication


Featured researches published by Alex R. Wade.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Russian blues reveal effects of language on color discrimination

Jonathan Winawer; Nathan Witthoft; Michael C. Frank; Lisa Wu; Alex R. Wade; Lera Boroditsky

English and Russian color terms divide the color spectrum differently. Unlike English, Russian makes an obligatory distinction between lighter blues (“goluboy”) and darker blues (“siniy”). We investigated whether this linguistic difference leads to differences in color discrimination. We tested English and Russian speakers in a speeded color discrimination task using blue stimuli that spanned the siniy/goluboy border. We found that Russian speakers were faster to discriminate two colors when they fell into different linguistic categories in Russian (one siniy and the other goluboy) than when they were from the same linguistic category (both siniy or both goluboy). Moreover, this category advantage was eliminated by a verbal, but not a spatial, dual task. These effects were stronger for difficult discriminations (i.e., when the colors were perceptually close) than for easy discriminations (i.e., when the colors were further apart). English speakers tested on the identical stimuli did not show a category advantage in any of the conditions. These results demonstrate that (i) categories in language affect performance on simple perceptual color tasks and (ii) the effect of language is online (and can be disrupted by verbal interference).


Nature Neuroscience | 2005

Visual field maps and stimulus selectivity in human ventral occipital cortex.

Alyssa A. Brewer; Junjie V. Liu; Alex R. Wade; Brian A. Wandell

Human visual cortex is organized into distinct visual field maps whose locations and properties provide important information about visual computations. There are two conflicting models of the organization and computational role of ventral occipital visual field maps. We report new functional MRI measurements that test these models. We also present the first coordinated measurements of visual field maps and stimulus responsivity to color, objects and faces in ventral occipital cortex. These measurements support a model that includes a hemifield map, hV4, adjacent to the central field representation of ventral V3. In addition, the measurements demonstrate a cluster of visual field maps in ventral occipital cortex (VO cluster) anterior to hV4. We describe the organization and stimulus responsivity of two new hemifield maps, VO-1 and VO-2, within this cluster. The maps and stimulus responsivity support a general organization of visual cortex based on clusters of maps that serve distinct computational functions.


Nature Neuroscience | 2003

Long-term deprivation affects visual perception and cortex

Ione Fine; Alex R. Wade; Alyssa A. Brewer; Michael G May; Daniel F Goodman; Geoffrey M. Boynton; Brian A. Wandell; Donald I. A. MacLeod

Recovery after long-term blindness was first studied in 1793, but few cases have been reported since. We combined psychophysical and neuroimaging techniques to characterize the effects of long-term visual deprivation on human cortex.


Vision Research | 2001

Visual areas and spatial summation in human visual cortex

William A. Press; Alyssa A. Brewer; Robert F. Dougherty; Alex R. Wade; Brian A. Wandell

Functional MRI measurements can securely partition the human posterior occipital lobe into retinotopically organized visual areas (V1, V2 and V3) with experiments that last only 30 min. Methods for identifying functional areas in the dorsal and ventral aspect of the human occipital cortex, however, have not achieved this level of precision; in fact, different laboratories have produced inconsistent reports concerning the visual areas in dorsal and ventral occipital lobe. We report four findings concerning the visual representation in dorsal regions of occipital cortex. First, cortex near area V3A contains a central field representation that is distinct from the foveal representation at the confluence of areas V1, V2 and V3. Second, adjacent to V3A there is a second visual area, V3B, which represents both the upper and lower quadrants. The central representation in V3B appears to merge with that of V3A, much as the central representations of V1/2/3 come together on the lateral margin of the posterior pole. Third, there is yet another dorsal representation of the central visual field. This representation falls in area V7, which includes a representation of both the upper and lower quadrants of the visual field. Fourth, based on visual field and spatial summation measurements, it appears that the receptive field properties of neurons in area V7 differ from those in areas V3A and V3B.


Neuron | 2009

Representation of Concurrent Stimuli by Population Activity in Visual Cortex

Laura Busse; Alex R. Wade; Matteo Carandini

How do neuronal populations represent concurrent stimuli? We measured population responses in cat primary visual cortex (V1) using electrode arrays. Population responses to two superimposed gratings were weighted sums of the individual grating responses. The weights depended strongly on the relative contrasts of the gratings. When the contrasts were similar, the population performed an approximately equal summation. When the contrasts differed markedly, however, the population performed approximately a winner-take-all competition. Stimuli that were intermediate to these extremes elicited intermediate responses. This entire range of behaviors was explained by a single model of contrast normalization. Normalization captured both the spike responses and the local field potential responses; it even predicted visually evoked currents source-localized to V1 in human subjects. Normalization has profound effects on V1 population responses and is likely to shape the interpretation of these responses by higher cortical areas.


Journal of Vision | 2008

fMRI measurements of color in macaque and human

Alex R. Wade; M Augath; Nk Logothetis; Brian A. Wandell

We have used fMRI to measure responses to chromatic and achromatic contrast in retinotopically defined regions of macaque and human visual cortex. We make four observations. Firstly, the relative amplitudes of responses to color and luminance stimuli in macaque area V1 are similar to those previously observed in human fMRI experiments. Secondly, the dorsal and ventral subdivisions of macaque area V4 respond in a similar way to opponent (L--M)-cone chromatic contrast suggesting that they are part of a single functional area. Thirdly, we find that macaque area V4, like area V1, responds preferentially to chromatic contrast compared to luminance contrast and the degree of preference is strongly influenced by the temporal frequency of the stimulus. Finally, we observe that while macaque V4d is a region on the dorsal surface of the macaque visual cortex that responds robustly to chromatic stimuli, human chromatic responses to identical stimuli are largely confined to the ventral surface suggesting a fundamental difference in the topographical organization of higher visual areas between humans and macaques.


The Journal of Neuroscience | 2006

Cue-invariant networks for figure and background processing in human visual cortex

L. Gregory Appelbaum; Alex R. Wade; Vladimir Y. Vildavski; Mark W. Pettet; Anthony M. Norcia

Lateral occipital cortical areas are involved in the perception of objects, but it is not clear how these areas interact with first tier visual areas. Using synthetic images portraying a simple texture-defined figure and an electrophysiological paradigm that allows us to monitor cortical responses to figure and background regions separately, we found distinct neuronal networks responsible for the processing of each region. The figure region of our displays was tagged with one temporal frequency (3.0 Hz) and the background region with another (3.6 Hz). Spectral analysis was used to separate the responses to the two regions during their simultaneous presentation. Distributed source reconstructions were made by using the minimum norm method, and cortical current density was measured in a set of visual areas defined on retinotopic and functional criteria with the use of functional magnetic resonance imaging. The results of the main experiments, combined with a set of control experiments, indicate that the figure region, but not the background, was routed preferentially to lateral cortex. A separate network extending from first tier through more dorsal areas responded preferentially to the background region. The figure-related responses were mostly invariant with respect to the texture types used to define the figure, did not depend on its spatial location or size, and mostly were unaffected by attentional instructions. Because of the emergent nature of a segmented figure in our displays, feedback from higher cortical areas is a likely candidate for the selection mechanism by which the figure region is routed to lateral occipital cortex.


NeuroImage | 2005

Predominantly extra-retinotopic cortical response to pattern symmetry

Christopher W. Tyler; Heidi A. Baseler; Leonid L. Kontsevich; Lora T. Likova; Alex R. Wade; Brian A. Wandell

Symmetry along one or more axes is a key property of objects and biological organisms. We report on a bilateral visual region of occipital cortex that responds strongly to the presence of multiple symmetries in the viewed image. The stimuli consisted of random dots organized in fourfold and onefold mirror-symmetric patterns, against random control stimuli. The contrast between symmetric and random patterns produced negligible or inconsistent activation of the primary visual projection area V1 or of other medial occipital projection areas. However, there was strong symmetry-specific activation in extra-retinotopic lateral occipital cortex. The high level of activation in this region of cortex may represent part of a general class of computations that require integration of information across a large span of the visual field.


The Journal of Neuroscience | 2006

No Functional Magnetic Resonance Imaging Evidence for Brightness and Color Filling-In In Early Human Visual Cortex

Frans W. Cornelissen; Alex R. Wade; Tony Vladusich; Robert F. Dougherty; Brian A. Wandell

The brightness and color of a surface depends on its contrast with nearby surfaces. For example, a gray surface can appear very light when surrounded by a black surface or dark when surrounded by a white surface. Some theories suggest that perceived surface brightness and color is represented explicitly by neural signals in cortical visual field maps; these neural signals are not initiated by the stimulus itself but rather by the contrast signals at the borders. Here, we use functional magnetic resonance imaging (fMRI) to search for such neural “filling-in” signals. Although we find the usual strong relationship between local contrast and fMRI response, when perceived brightness or color changes are induced by modulating a surrounding field, rather than the surface itself, we find there is no corresponding local modulation in primary visual cortex or other nearby retinotopic maps. Moreover, when we model the obtained fMRI responses, we find strong evidence for contributions of both local and long-range edge responses. We argue that such extended edge responses may be caused by neurons previously identified in neurophysiological studies as being brightness responsive, a characterization that may therefore need to be revised. We conclude that the visual field maps of human V1 and V2 do not contain filled-in, topographical representations of surface brightness and color.


NeuroImage | 2006

The specificity of cortical region KO to depth structure

Christopher W. Tyler; Lora T. Likova; Leonid L. Kontsevich; Alex R. Wade

Functional MRI studies have identified a cortical region designated as KO between retinotopic areas V3A/B and motion area V5 in human cortex as particularly responsive to motion-defined or kinetic borders. To determine the response of the KO region to more general aspects of structure, we used stereoscopic depth borders and disparate planes with no borders, together with three stimulus types that evoked no depth percept: luminance borders, line contours and illusory phase borders. Responses to these stimuli in the KO region were compared with the responses in retinotopically defined areas that have been variously associated with disparity processing in neurophysiological and fMRI studies. The strongest responses in the KO region were to stimuli evoking perceived depth structure from either disparity or motion cues, but it showed negligible responses either to luminance-based contour stimuli or to edgeless disparity stimuli. We conclude that the region designated as KO is best regarded as a primary center for the generic representation of depth structure rather than any kind of contour specificity.

Collaboration


Dive into the Alex R. Wade's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark W. Pettet

Smith-Kettlewell Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge