Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex S. Gardner is active.

Publication


Featured researches published by Alex S. Gardner.


Science | 2013

A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009

Alex S. Gardner; Geir Moholdt; J. Graham Cogley; Bert Wouters; Anthony A. Arendt; John Wahr; Etienne Berthier; Regine Hock; W. Tad Pfeffer; Georg Kaser; Stefan R. M. Ligtenberg; Tobias Bolch; Martin Sharp; Jon Ove Hagen; Michiel R. van den Broeke; Frank Paul

Melting Away We assume the Greenland and Antarctica ice sheets are the main drivers of global sea-level rise, but how large is the contribution from other sources of glacial ice? Gardner et al. (p. 852) synthesize data from glacialogical inventories to find that glaciers in the Arctic, Canada, Alaska, coastal Greenland, the southern Andes, and high-mountain Asia contribute approximately as much melt water as the ice sheets themselves: 260 billion tons per year between 2003 and 2009, accounting for about 30% of the observed sea-level rise during that period. The contribution of glaciers to sea level rise is nearly as much as that of the Greenland and Antarctic Ice Sheets combined. Glaciers distinct from the Greenland and Antarctic Ice Sheets are losing large amounts of water to the world’s oceans. However, estimates of their contribution to sea level rise disagree. We provide a consensus estimate by standardizing existing, and creating new, mass-budget estimates from satellite gravimetry and altimetry and from local glaciological records. In many regions, local measurements are more negative than satellite-based estimates. All regions lost mass during 2003–2009, with the largest losses from Arctic Canada, Alaska, coastal Greenland, the southern Andes, and high-mountain Asia, but there was little loss from glaciers in Antarctica. Over this period, the global mass budget was –259 ± 28 gigatons per year, equivalent to the combined loss from both ice sheets and accounting for 29 ± 13% of the observed sea level rise.


Nature | 2011

Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago

Alex S. Gardner; Geir Moholdt; Bert Wouters; Gabriel J. Wolken; David O. Burgess; Martin Sharp; J. Graham Cogley; Carsten Braun; Claude Labine

Mountain glaciers and ice caps are contributing significantly to present rates of sea level rise and will continue to do so over the next century and beyond. The Canadian Arctic Archipelago, located off the northwestern shore of Greenland, contains one-third of the global volume of land ice outside the ice sheets, but its contribution to sea-level change remains largely unknown. Here we show that the Canadian Arctic Archipelago has recently lost 61 ± 7 gigatonnes per year (Gt yr−1) of ice, contributing 0.17 ± 0.02 mm yr−1 to sea-level rise. Our estimates are of regional mass changes for the ice caps and glaciers of the Canadian Arctic Archipelago referring to the years 2004 to 2009 and are based on three independent approaches: surface mass-budget modelling plus an estimate of ice discharge (SMB+D), repeat satellite laser altimetry (ICESat) and repeat satellite gravimetry (GRACE). All three approaches show consistent and large mass-loss estimates. Between the periods 2004–2006 and 2007–2009, the rate of mass loss sharply increased from 31 ± 8 Gt yr−1 to 92 ± 12 Gt yr−1 in direct response to warmer summer temperatures, to which rates of ice loss are highly sensitive (64 ± 14 Gt yr−1 per 1 K increase). The duration of the study is too short to establish a long-term trend, but for 2007–2009, the increase in the rate of mass loss makes the Canadian Arctic Archipelago the single largest contributor to eustatic sea-level rise outside Greenland and Antarctica.


Journal of Climate | 2009

Near-Surface Temperature Lapse Rates over Arctic Glaciers and Their Implications for Temperature Downscaling

Alex S. Gardner; Martin Sharp; Roy M. Koerner; Claude Labine; Sarah Boon; Shawn J. Marshall; David O. Burgess; David Lewis

Distributed glacier surface melt models are often forced using air temperature fields that are either downscaled from climate models or reanalysis, or extrapolated from station measurements. Typically, the downscaling and/or extrapolation are performed using a constanttemperaturelapserate, which is often taken to be the free-air moist adiabatic lapse rate (MALR: 68‐78 Ck m 21 ). To explore the validity of this approach, the authors examined altitudinal gradients in daily mean air temperature along six transects across four glaciers in the Canadian high Arctic. The dataset includes over 58 000 daily averaged temperature measurements from 69 sensors covering the period 1988‐2007. Temperature lapse rates near glacier surfaces vary on bothdailyandseasonaltimescales,areconsistentlylowerthan theMALR(ablation seasonmean:4.98Ckm 21 ), and exhibit strong regional covariance. A significant fraction of the daily variability in lapse rates is associated with changes in free-atmospheric temperatures (higher temperatures 5 lower lapse rates). The temperature fields generated by downscaling point location summit elevation temperatures to the glacier surface using temporally variable lapse rates are a substantial improvement over those generated using the static MALR. Thesefindingssuggestthatlowernear-surfacetemperaturelapseratescanbeexpectedunderawarmingclimate and that the air temperature near the glacier surface is less sensitive to changes in the temperature of the free atmosphere than is generally assumed.


Science | 2016

A decade of sea level rise slowed by climate-driven hydrology

John T. Reager; Alex S. Gardner; James S. Famiglietti; D. N. Wiese; A. Eicker; Min-Hui Lo

By land or by sea How much of an effect does terrestrial groundwater storage have on sea-level rise? Reager et al. used gravity measurements made between 2002 and 2014 by NASAs Gravity Recovery And Climate Experiment (GRACE) satellites to quantify variations in groundwater storage. Combining those data with estimates of mass loss by glaciers revealed groundwaters impact on sea-level change. Net groundwater storage has been increasing, and the greatest regional changes, both positive and negative, are associated with climate-driven variability in precipitation. Thus, groundwater storage has slowed the rate of recent sea-level rise by roughly 15%. Science, this issue p. 699 Recent storage of excess groundwater has measurably slowed sea level rise. Climate-driven changes in land water storage and their contributions to sea level rise have been absent from Intergovernmental Panel on Climate Change sea level budgets owing to observational challenges. Recent advances in satellite measurement of time-variable gravity combined with reconciled global glacier loss estimates enable a disaggregation of continental land mass changes and a quantification of this term. We found that between 2002 and 2014, climate variability resulted in an additional 3200 ± 900 gigatons of water being stored on land. This gain partially offset water losses from ice sheets, glaciers, and groundwater pumping, slowing the rate of sea level rise by 0.71 ± 0.20 millimeters per year. These findings highlight the importance of climate-driven changes in hydrology when assigning attribution to decadal changes in sea level.


Journal of Climate | 2007

Influence of the Arctic Circumpolar Vortex on the Mass Balance of Canadian High Arctic Glaciers

Alex S. Gardner; Martin Sharp

Abstract Variability in July mean surface air temperatures from 1963 to 2003 accounted for 62% of the variance in the regional annual glacier mass balance signal for the Canadian High Arctic. A regime shift to more negative regional glacier mass balance occurred between 1986 and 1987, and is linked to a coincident shift from lower to higher mean July air temperatures. Both the interannual changes and the regime shifts in regional glacier mass balance and July air temperatures are related to variations in the position and strength of the July circumpolar vortex. In years when the July vortex is “strong” and its center is located in the Western Hemisphere, positive mass balance anomalies prevail. In contrast, highly negative mass balance anomalies occur when the July circumpolar vortex is either weak or strong without elongation over the Canadian High Arctic, and its center is located in the Eastern Hemisphere. The occurrence of westerly positioned July vortices has decreased by 40% since 1987. The associat...


Annals of Glaciology | 2009

Sensitivity of net mass-balance estimates to near-surface temperature lapse rates when employing the degree-day method to estimate glacier melt

Alex S. Gardner; Martin Sharp

Abstract Glacier mass-balance models that employ the degree-day method of melt modeling are most commonly driven by surface air temperatures that have been downscaled over the area of interest, using digital elevation models and assuming a constant free air lapse rate that is often taken to be the moist adiabatic lapse rate (MALR: –6.5°Ckm–1). Air-temperature lapse rates measured over melting glacier surface are, however, consistently less steep than free air values and have been shown to vary systematically with lower-tropospheric temperatures. In this study, the implications of including a variable near-surface lapse rate in a 26 year (1980–2006) degree-day model simulation of the surface mass balance of Devon Ice Cap, Nunavut, Canada, are examined and compared with estimates derived from surface air temperatures downscaled using a constant near-surface lapse rate equal to the measured summer mean (–4.9°Ckm–1) and the MALR. Our results show that degree-day models are highly sensitive to the choice of lapse rate. When compared with 23 years of surface mass-balance measurements from the northwest sector of the ice cap, model estimates are significantly better when surface air temperatures are downscaled using a modeled daily lapse rate rather than a constant lapse equal to either the summer mean or the MALR.


Journal of Geophysical Research | 2016

Status of high‐latitude precipitation estimates from observations and reanalyses

Ali Behrangi; Matthew W. Christensen; Mark I. Richardson; Matthew Lebsock; Graeme L. Stephens; George J. Huffman; David T. Bolvin; Robert F. Adler; Alex S. Gardner; Bjorn Lambrigtsen; Eric J. Fetzer

An intercomparison of high-latitude precipitation characteristics from observation-based and reanalysis products is performed. In particular the precipitation products from CloudSat provide an independent assessment to other widely used products, these being the observationally-based GPCP, GPCC and CMAP products and the ERA-Interim, MERRA and NCEP-DOE R2 reanalyses. Seasonal and annual total precipitation in both hemispheres poleward of 55° latitude is considered in all products, and CloudSat is used to assess intensity and frequency of precipitation occurrence by phase, defined as rain, snow or mixed phase. Furthermore, an independent estimate of snow accumulation during the cold season was calculated from the Gravity Recovery and Climate Experiment (GRACE). The intercomparison is performed for the 2007-2010 period when CloudSat was fully operational. It is found that ERA- Interim and MERRA are broadly similar, agreeing more closely with CloudSat over oceans. ERA-Interim also agrees well with CloudSat estimates of snowfall over Antarctica where total snowfall from GPCP and CloudSat is almost identical. A number of disagreements on regional or seasonal scales are identified: CMAP reports much lower ocean precipitation relative to other products, NCEP-DOE R2 reports much higher summer precipitation over northern hemisphere land, GPCP reports much higher snowfall over Eurasia, and CloudSat overestimates precipitation over Greenland, likely due to mischaracterization of rain and mixed-phase precipitation. These outliers are likely unrealistic for these specific regions and time periods. These estimates from observations and reanalyses provide useful insights for diagnostic assessment of precipitation products in high latitudes, quantifying the current uncertainties, improving the products, and establishing a benchmark for assessment of climate models.


Journal of Geophysical Research | 2016

Sensitivity of Barnes Ice Cap, Baffin Island, Canada, to climate state and internal dynamics

A. Gilbert; Gwenn E. Flowers; Gifford H. Miller; Bernhard Rabus; W. Van Wychen; Alex S. Gardner; Luke Copland

Barnes Ice Cap is a remnant of the Laurentide Ice Sheet, which covered much of northern North America during the Last Glacial Maximum. Barnes reached a quasi-equilibrium state ~2000 years ago and has remained similar in size since then, with a small increase during the Little Ice Age. In this study, we combine historical observations (1960–1980) with more recent satellite and airborne data (1995–2010) to drive a mass balance model coupled to a transient thermomechanical model with an adaptive mesh geometry. The model is used to characterize the current state of the ice cap and to investigate its stability as a function of climate and its own internal dynamics. On millennial time scales we show that ice flow is influenced by adjustment of an unsteady shape, by gently sloping bedrock, and by contrasting viscosities between the Pleistocene and Holocene ice. On shorter time scales, Barnes is affected by surge activity. Sensitivity tests reveal that Barnes experienced climate conditions which enabled its stability 2000 to 3000 years ago but will disappear under current climate conditions in the next millennium.


Journal of Geophysical Research | 2014

Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions

Mark G. Flanner; Alex S. Gardner; Sabine Eckhardt; Andreas Stohl; Justin Perket

Although the 2010 volcanic eruptions of Eyjafjallajokull did not exert a large climate forcing, several features of their emissions favored weaker aerosol cooling or stronger warming than commonly attributed to volcanic events. These features include a high ratio of fine ash to SO2, occurrence near reflective surfaces exposed to strong insolation, and the production of very little stratospheric sulfate. We derive plausible ranges of optical properties and top-of-atmosphere direct radiative forcing for aerosol emissions from these events and find that shortwave cooling from sulfate was largely offset by warming from ash deposition to cryospheric surfaces and longwave warming from atmospheric ash and sulfate. Shortwave forcing from atmospheric ash was slightly negative in the global mean under central estimates of optical properties, though this forcing term was uniquely sensitive to the simulated distribution of clouds. The forcing components sum to near climate-neutral global mean 2010 instantaneous (−1.9 mWm−2) and effective (−0.5 mWm−2) radiative forcing, where the latter is elevated by high efficacy of snow-deposited ash. Ranges in net instantaneous (−7.3 to +2.8 mWm−2) and effective (−7.2 to +4.9 mWm−2) forcing derived from sensitivity studies are dominated by uncertainty in ash shortwave absorptivity. Forcing from airborne ash decayed quickly, while sulfate forcing persisted for several weeks and ash deposits continued to darken snow and sea ice surfaces for months following the eruption. Despite small global forcing, monthly averaged net forcing exceeded 1 Wm−2 in some regions. These findings indicate that ash can be an important component of climate forcing from high-latitude volcanic eruptions and in some circumstances may exceed sulfate forcing.


Archive | 2014

Remote sensing of recent glacier changes in the Canadian Arctic

Martin Sharp; David O. Burgess; Fiona Cawkwell; Luke Copland; James A. Davis; Evelyn K Dowdeswell; Julian A. Dowdeswell; Alex S. Gardner; Douglas Mair; Libo Wang; Scott N. Williamson; Gabriel J. Wolken; Faye Wyatt

The Canadian Arctic contains the largest area of land ice (~150,000 km2) on Earth outside the ice sheets of Greenland and Antarctica and is a potentially significant contributor to global sea level change. The current ice cover includes large ice caps that are remnants of the Wisconsinan Laurentide and Innuitian ice sheets, and many smaller ice caps and valley glaciers that formed during the late Holocene. Most of these ice masses have decreased in area over the past century as a result of climate warming in the first half of the 20th century and since the mid-1980s. In general, smaller ice masses have lost a higher proportion of their area, but the largest total area losses have come from the larger ice caps. Both iceberg calving and negative surface mass balances have contributed to this episode of glacier shrinkage. Long-term calving rates are not well known, however, and many tidewater glaciers exhibit velocity variability on a range of timescales that may affect calving rates. Floating ice shelves in northern Ellesmere Island have lost over 90 % of their area in the 20th century, with the most recent phase of disintegration occurring since 2000. Some fjords in the region are now ice free for the first time in over 3000 years. Regional rates of mass loss have accelerated strongly since 2005, and Canadian Arctic glaciers and ice caps have emerged as the most significant non–ice sheet contributor to the nonsteric component of global sea level rise.

Collaboration


Dive into the Alex S. Gardner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geir Moholdt

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

John T. Reager

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Behrangi

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theodore A. Scambos

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Johan Nilsson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge