Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex S. Moura is active.

Publication


Featured researches published by Alex S. Moura.


IEEE Transactions on Magnetics | 2012

The Nonconforming Point Interpolation Method Applied to Electromagnetic Problems

Naísses Z. Lima; Renato C. Mesquita; Werley G. Facco; Alex S. Moura; Elson J. Silva

Nonconforming point interpolation method (NPIM) is a meshless method that has been applied to problems in mechanics in the last years. In this paper, we investigate NPIM in electromagnetism. We present its formulation and shape functions, which are generated by the radial point interpolation method with polynomial terms. The numerical results are compared to the ones obtained by the finite flement method (FEM) and the element-free Galerkin method (EFG).


IEEE Transactions on Magnetics | 2012

A Recursive Sparsification of the Inverse Hodge Matrix

Alex S. Moura; Rodney R. Saldanha; Elson J. Silva; Adriano C. Lisboa; Werley G. Facco; N. Z. Facco

When applying the theory of differential forms to solve wave propagation problems in time domain, we must solve at each time step a sparse linear system defined by the insertion of constitutive laws via the mass matrices. In this paper, we describe a recursive technique to efficiently calculate the approximated inverse of Hodge matrix. The fundamental idea is to recursively decompose the mass matrix in to a decreasing size sequence of matrices using block matrix inversion. During the recomposition process, the matrix is sparsified. Numerical results are presented to validate our approach.


IEEE Transactions on Magnetics | 2012

Handling Material Discontinuities in the Generalized Finite Element Method to Solve Wave Propagation Problems

Werley G. Facco; Elson J. Silva; Alex S. Moura; Naísses Z. Lima; Rodney R. Saldanha

To solve wave propagation problems involving change of medium, many authors employ the generalized finite element method with plane wave enrichment and Lagrange multipliers to ensure interface constraints. However this approach produces ill conditioned and nonpositive definite systems, making it hard to solve. This paper presents an approach based on the mortar element method that substitutes the Lagrange multipliers with the advantage of generating sparse and positive definite systems. Various numerical aspects affecting the generalized finite element method efficiency are analyzed by solving a 2-D scattering problem.


Proceeding Series of the Brazilian Society of Computational and Applied Mathematics | 2018

Quadratura de Gauss de Alta Ordem Adaptativa no Método dos Elementos Finitos Generalizados

Werley G. Facco; Anderson Bastos; Alex S. Moura; Elson J. Silva

Para resolver a equacao de Helmholtz, o Metodo de Elementos Finitos tradicional, requer uma malha com resolucao minima de dez pontos nodais por comprimento de onda. Por outro lado, o Metodo de Elementos Finitos Generalizados, onde a Particao de Unidade e enriquecida com as funcoes de ondas planas, fornece boas aproximacoes para a solucao deste problema, utilizando uma malha com resolucao maior que um comprimento de onda. No Metodo de Elementos Finitos Generalizados, em geral, usa-se quadratura de Gauss de alta ordem para calcular o valor das integrais das suas funcoes de base, o que produz um custo computacional adiconal para o metodo. A principal contribuicao deste trabalho, e apresentar uma abordagem capaz de minimizar o numero de nos e pesos de Gauss, necessario na fase de calculo de integrais do Metodo de Elementos Finitos Generalizados, sem perder a sua precisao. Para validar a abordagem apresentada, o Metodo de Elementos Finitos Generalizados sera utilizado para resolver um problema eletromagnetico modelado pela a equacao de Helmholtz.


Proceeding Series of the Brazilian Society of Computational and Applied Mathematics | 2015

Análise do sistema resultante do MEFG via forma real equivalente

Williana dos S. Guimarães; Werley G. Facco; Eduardo da Silva; Alex S. Moura

Neste trabalho, certas caracteristicas do sistema resultante do Metodo dos Elementos Finitos Generalizados (MEFG) aplicado a problemas de eletromagnetismo, serao apresentadas e avaliadas atraves da sua forma equivalente real. Tais caracteristicas serao confrontadas com o sistema resultante original do MEFG na sua forma a valor complexo.


IEEE Transactions on Magnetics | 2015

Performance of the Alternating Direction Implicit Scheme With Recursive Sparsification for the Finite Element Time Domain Method

Alex S. Moura; Elson J. Silva; Rodney R. Saldanha; Werley G. Facco

In this paper, we solve the ε and B mixed finite element time domain formulation using the alternating-direction implicit (ADI) scheme in time. To save computational cost, the algorithm is improved using a recursive sparsification procedure that approximates the inverse matrix needed to calculate the electric field. Although the method is unconditionally stable, we show that the numerical performance of the algorithm is strongly related to the time step. Numerical results demonstrated that for the same accuracy our approach is much faster than the ADI with Cholesky factorization.


Proceeding Series of the Brazilian Society of Computational and Applied Mathematics | 2014

Implementação eficiente para auxiliar a construção do sistema matricial do MEFE

Romulo P. Lucchini; Werley G. Facco; Eduardo da Silva; Alex S. Moura

O Metodo dos Elementos Finitos Estendidos (MEFE) possui extensa aplicabilidade na modelagem e na solucao de problemas eletromagneticos com caracteristicas especiais localizadas [1]. Tais caracteristicas podem aparecer no dominio computacional do problema, o que altera a configuracao da malha que cobre o dominio computacional. O objetivo desse trabalho e apresentar uma implementacao eficiente capaz de fornecer todas as informacoes a respeito dos elementos, arestas e nos da nova malha de elementos finitos gerada a partir da interface entre os diferentes meios.


Microwave and Optical Technology Letters | 2013

Discretization of the CFS‐PML for computational electromagnetics using discrete differential forms

Alex S. Moura; Rodiney R. Saldanha; Elson J. Silva; Mario F. Pantoja; Adriano C. Lisboa; Werley G. Facco


Microwave and Optical Technology Letters | 2012

Handling material discontinuities in a nonconforming generalized finite element method to solve wave propagation problems

Werley G. Facco; Elson J. Silva; Ricardo Adriano; Alex S. Moura; Naísses Z. Lima


Archive | 2018

Escolha ótima dos parâmetros eletromagnéticos para a matriz Hodge Geométrica

Alex S. Moura; Werley G. Facco; Elson J. Silva; Rodney R. Saldanha

Collaboration


Dive into the Alex S. Moura's collaboration.

Top Co-Authors

Avatar

Werley G. Facco

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Elson J. Silva

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Rodney R. Saldanha

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Naísses Z. Lima

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Adriano C. Lisboa

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Ricardo Adriano

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Renato C. Mesquita

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Rodiney R. Saldanha

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge