Alexander Andrew Myburg
University of Pretoria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Andrew Myburg.
Nature | 2014
Alexander Andrew Myburg; Dario Grattapaglia; Gerald A. Tuskan; Uffe Hellsten; Richard D. Hayes; Jane Grimwood; Jerry Jenkins; Erika Lindquist; Hope Tice; Diane Bauer; David Goodstein; Inna Dubchak; Alexandre Poliakov; Eshchar Mizrachi; Anand Raj Kumar Kullan; Steven G. Hussey; Desre Pinard; Karen Van der Merwe; Pooja Singh; Ida Van Jaarsveld; Orzenil Bonfim Silva-Junior; Roberto C. Togawa; Marilia R. Pappas; Danielle A. Faria; Carolina Sansaloni; Cesar D. Petroli; Xiaohan Yang; Priya Ranjan; Timothy J. Tschaplinski; Chu-Yu Ye
Eucalypts are the world’s most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.
Plant Physiology | 2004
Matias Kirst; Alexander Andrew Myburg; Jose Leon; Mariana E. Kirst; Jay T. Scott; Ronald R. Sederoff
Phenotypic, genotypic, and transcript level (microarray) data from an interspecific backcross population of Eucalyptus grandis and Eucalyptus globulus were integrated to dissect the genetic and metabolic network underlying growth variation. Transcript abundance, measured for 2,608 genes in the differentiating xylem of a 91 (E. grandis × E. globulus) × E. grandis backcross progeny was correlated with diameter variation, revealing coordinated down-regulation of genes encoding enzymes of the lignin biosynthesis and associated methylation pathways in fast growing individuals. Lignin analysis of wood samples confirmed the content and quality predicted by the transcript levels measured on the microarrays. Quantitative trait locus (QTL) analysis of transcript levels of lignin-related genes showed that their mRNA abundance is regulated by two genetic loci, demonstrating coordinated genetic control over lignin biosynthesis. These two loci colocalize with QTLs for growth, suggesting that the same genomic regions are regulating growth, and lignin content and composition in the progeny. Genetic mapping of the lignin genes revealed that most of the key biosynthetic genes do not colocalize with growth and transcript level QTLs, with the exception of the locus encoding the enzyme S-adenosylmethionine synthase. This study illustrates the power of integrating quantitative analysis of gene expression data and genetic map information to discover genetic and metabolic networks regulating complex biological traits.
BMC Genomics | 2010
Eshchar Mizrachi; Charles A. Hefer; Martin Ranik; Fourie Joubert; Alexander Andrew Myburg
BackgroundDe novo assembly of transcript sequences produced by short-read DNA sequencing technologies offers a rapid approach to obtain expressed gene catalogs for non-model organisms. A draft genome sequence will be produced in 2010 for a Eucalyptus tree species (E. grandis) representing the most important hardwood fibre crop in the world. Genome annotation of this valuable woody plant and genetic dissection of its superior growth and productivity will be greatly facilitated by the availability of a comprehensive collection of expressed gene sequences from multiple tissues and organs.ResultsWe present an extensive expressed gene catalog for a commercially grown E. grandis × E. urophylla hybrid clone constructed using only Illumina mRNA-Seq technology and de novo assembly. A total of 18,894 transcript-derived contigs, a large proportion of which represent full-length protein coding genes were assembled and annotated. Analysis of assembly quality, length and diversity show that this dataset represent the most comprehensive expressed gene catalog for any Eucalyptus tree. mRNA-Seq analysis furthermore allowed digital expression profiling of all of the assembled transcripts across diverse xylogenic and non-xylogenic tissues, which is invaluable for ascribing putative gene functions.ConclusionsDe novo assembly of Illumina mRNA-Seq reads is an efficient approach for transcriptome sequencing and profiling in Eucalyptus and other non-model organisms. The transcriptome resource (Eucspresso, http://eucspresso.bi.up.ac.za/) generated by this study will be of value for genomic analysis of woody biomass production in Eucalyptus and for comparative genomic analysis of growth and development in woody and herbaceous plants.
Tree Genetics & Genomes | 2012
Dario Grattapaglia; Re Vaillancourt; Merv Shepherd; Bala R. Thumma; William J. Foley; Carsten Külheim; Bm Potts; Alexander Andrew Myburg
The status of genomics and genetics research in the Myrtaceae, a large family of dicotyledonous woody plants, is reviewed with Eucalyptus as the focal genus. The family contains over 5,650 species in 130 to 150 genera, predominantly of neo-tropical and Southern Hemisphere distribution. Several genera are well known for their economic importance worldwide. Myrtaceae are typically diploids with small to intermediate genome size. Microsatellites have been developed for several genera while higher throughput marker systems such as diversity arrays technology and single nucleotide polymorphism are available for Eucalyptus. Molecular data have been fundamental to current perspectives on the phylogeny, phylogeography and taxonomy of the Myrtaceae, while numerous studies of genetic diversity have been carried out particularly as it relates to endangered, rare, fragmented, overharvested or economically important species. Large expressed sequence tag collections for species of Eucalyptus have recently become public to support the annotation of the Eucalyptus grandis genome. Transcriptomics in Eucalyptus has advanced by microarrays and next-generation sequencing focusing on wood development. Linkage maps for Eucalyptus display high synteny across species and have been extensively used to map quantitative trait loci for a number of traits including growth, wood quality, disease and insect resistance. Candidate gene-based association genetics have successfully found marker–trait associations for wood and fiber traits. Genomic selection experiments have demonstrated clear potential to improve the efficiency of breeding programs while freeze-tolerant transgenic Eucalyptus trials have recently been initiated. The recently released E. grandis genome, sequenced to an average coverage of 8×, will open up exceptional opportunities to advance Myrtaceae genetics and genomics research.
Molecular Phylogenetics and Evolution | 2011
Dorothy A. Steane; Dean Nicolle; Carolina Sansaloni; Cesar D. Petroli; Jason Carling; Andrzej Kilian; Alexander Andrew Myburg; Dario Grattapaglia; Re Vaillancourt
A set of over 8000 Diversity Arrays Technology (DArT) markers was tested for its utility in high-resolution population and phylogenetic studies across a range of Eucalyptus taxa. Small-scale population studies of Eucalyptus camaldulensis, Eucalyptus cladocalyx, Eucalyptus globulus, Eucalyptus grandis, Eucalyptus nitens, Eucalyptus pilularis and Eucalyptus urophylla demonstrated the potential of genome-wide genotyping with DArT markers to differentiate species, to identify interspecific hybrids and to resolve biogeographic disjunctions within species. The population genetic studies resolved geographically partitioned clusters in E. camaldulensis, E. cladocalyx, E. globulus and E. urophylla that were congruent with previous molecular studies. A phylogenetic study of 94 eucalypt species provided results that were largely congruent with traditional taxonomy and ITS-based phylogenies, but provided more resolution within major clades than had been obtained previously. Ascertainment bias (the bias introduced in a phylogeny from using markers developed in a small sample of the taxa that are being studied) was not detected. DArT offers an unprecedented level of resolution for population genetic, phylogenetic and evolutionary studies across the full range of Eucalyptus species.
Plant Methods | 2010
Carolina Sansaloni; Cesar D. Petroli; Jason Carling; Corey J. Hudson; Dorothy A. Steane; Alexander Andrew Myburg; Dario Grattapaglia; Re Vaillancourt; Andrzej Kilian
BackgroundA number of molecular marker technologies have allowed important advances in the understanding of the genetics and evolution of Eucalyptus, a genus that includes over 700 species, some of which are used worldwide in plantation forestry. Nevertheless, the average marker density achieved with current technologies remains at the level of a few hundred markers per population. Furthermore, the transferability of markers produced with most existing technology across species and pedigrees is usually very limited. High throughput, combined with wide genome coverage and high transferability are necessary to increase the resolution, speed and utility of molecular marker technology in eucalypts. We report the development of a high-density DArT genome profiling resource and demonstrate its potential for genome-wide diversity analysis and linkage mapping in several species of Eucalyptus.FindingsAfter testing several genome complexity reduction methods we identified the Pst I/Taq I method as the most effective for Eucalyptus and developed 18 genomic libraries from Pst I/Taq I representations of 64 different Eucalyptus species. A total of 23,808 cloned DNA fragments were screened and 13,300 (56%) were found to be polymorphic among 284 individuals. After a redundancy analysis, 6,528 markers were selected for the operational array and these were supplemented with 1,152 additional clones taken from a library made from the E. grandis tree whose genome has been sequenced. Performance validation for diversity studies revealed 4,752 polymorphic markers among 174 individuals. Additionally, 5,013 markers showed segregation when screened using six inter-specific mapping pedigrees, with an average of 2,211 polymorphic markers per pedigree and a minimum of 859 polymorphic markers that were shared between any two pedigrees.ConclusionsThis operational DArT array will deliver 1,000-2,000 polymorphic markers for linkage mapping in most eucalypt pedigrees and thus provide high genome coverage. This array will also provide a high-throughput platform for population genetics and phylogenetics in Eucalyptus. The transferability of DArT across species and pedigrees is particularly valuable for a large genus such as Eucalyptus and will facilitate the transfer of information between different studies. Furthermore, the DArT marker array will provide a high-resolution link between phenotypes in populations and the Eucalyptus reference genome, which will soon be completed.
BMC Plant Biology | 2011
Steven G. Hussey; Eshchar Mizrachi; Antanas V. Spokevicius; Gerd Bossinger; David Kenneth Berger; Alexander Andrew Myburg
BackgroundNAC domain transcription factors initiate secondary cell wall biosynthesis in Arabidopsis fibres and vessels by activating numerous transcriptional regulators and biosynthetic genes. NAC family member SND2 is an indirect target of a principal regulator of fibre secondary cell wall formation, SND1. A previous study showed that overexpression of SND2 produced a fibre cell-specific increase in secondary cell wall thickness in Arabidopsis stems, and that the protein was able to transactivate the cellulose synthase8 (CesA8) promoter. However, the full repertoire of genes regulated by SND2 is unknown, and the effect of its overexpression on cell wall chemistry remains unexplored.ResultsWe overexpressed SND2 in Arabidopsis and analyzed homozygous lines with regards to stem chemistry, biomass and fibre secondary cell wall thickness. A line showing upregulation of CesA8 was selected for transcriptome-wide gene expression profiling. We found evidence for upregulation of biosynthetic genes associated with cellulose, xylan, mannan and lignin polymerization in this line, in agreement with significant co-expression of these genes with native SND2 transcripts according to public microarray repositories. Only minor alterations in cell wall chemistry were detected. Transcription factor MYB103, in addition to SND1, was upregulated in SND2-overexpressing plants, and we detected upregulation of genes encoding components of a signal transduction machinery recently proposed to initiate secondary cell wall formation. Several homozygous T4 and hemizygous T1 transgenic lines with pronounced SND2 overexpression levels revealed a negative impact on fibre wall deposition, which may be indirectly attributable to excessive overexpression rather than co-suppression. Conversely, overexpression of SND2 in Eucalyptus stems led to increased fibre cross-sectional cell area.ConclusionsThis study supports a function for SND2 in the regulation of cellulose and hemicellulose biosynthetic genes in addition of those involved in lignin polymerization and signalling. SND2 seems to occupy a subordinate but central tier in the secondary cell wall transcriptional network. Our results reveal phenotypic differences in the effect of SND2 overexpression between woody and herbaceous stems and emphasize the importance of expression thresholds in transcription factor studies.
Frontiers in Plant Science | 2013
Steven G. Hussey; Eshchar Mizrachi; Nicky M. Creux; Alexander Andrew Myburg
The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture, and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW) biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein–DNA and protein–protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.
African Journal of Biotechnology | 2005
Yoseph Beyene; Anna-Maria Botha; Alexander Andrew Myburg
The comparison of different methods of estimating the genetic diversity could define their usefulness in plant breeding and conservation programs. In this study, a total of 15 morphological traits, eight AFLPprimer combinations and 20 simple sequence repeat (SSR) loci were used (i) to study the morphological and genetic diversity among 62 selected highland maize accessions, (ii) to assess the level of correlation between phenotypic and genetic distances, and (iii) to classify the accessions into groups based on molecular profiles and morphological traits. The analysis of variance of the morphological data revealed significant differences among accessions for all measured traits. The mean morphological dissimilarity (0.3 with a range of 0.1-0.68) was low in comparison to dissimilarity calculated using SSR markers (0.49 with a range 0.27-0.63) and AFLP markers (0.57 with a range 0.320.69). The correlation between the morphological dissimilarity matrix and the matrices of genetic dissimilarity based on SSR and AFLP markers was 0.43 and 0.39, respectively (p = 0.001). The correlation between SSRs and AFLPs dissimilarity matrices was 0.67 (p = 0.001). This congruence indicates that both marker systems are equally suited for genetic diversity study of maize accessions. Cluster analysis of morphological and marker distances revealed three groups of maize accessions with distinctive genetic profiles and morphological traits. This information will be useful for collections, conservation and various breeding programs in the highlands of Ethiopia.
Genetics | 2004
Alexander Andrew Myburg; Claus Vogl; A. Rod Griffin; Ronald R. Sederoff; Ross W. Whetten
The genetic architecture of hybrid fitness characters can provide valuable insights into the nature and evolution of postzygotic reproductive barriers in diverged species. We determined the genome-wide distribution of barriers to introgression in an F1 hybrid of two Eucalyptus tree species, Eucalyptus grandis (W. Hill ex Maiden.) and E. globulus (Labill.). Two interspecific backcross families (N = 186) were used to construct comparative, single-tree, genetic linkage maps of an F1 hybrid individual and two backcross parents. A total of 1354 testcross AFLP marker loci were evaluated in the three parental maps and a substantial proportion (27.7% average) exhibited transmission ratio distortion (α= 0.05). The distorted markers were located in distinct regions of the parental maps and marker alleles within each region were all biased toward either of the two parental species. We used a Bayesian approach to estimate the position and effect of transmission ratio distorting loci (TRDLs) in the distorted regions of each parental linkage map. The relative viability of TRDL alleles ranged from 0.20 to 0.72. Contrary to expectation, heterospecific (donor) alleles of TRDLs were favored as often as recurrent alleles in both backcrosses, suggesting that positive and negative heterospecific interactions affect introgression rates in this wide interspecific pedigree.