Alexander Bello
Public Health Agency of Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Bello.
Science Translational Medicine | 2012
Xiangguo Qiu; Jonathan Audet; Gary Wong; Stéphane Pillet; Alexander Bello; Teresa Cabral; Jim Strong; Frank Plummer; Cindy R. Corbett; Judie B. Alimonti; Gary P. Kobinger
Macaques survived infection with Ebola virus when treated starting at 24 hours after infection with mix of three neutralizing monoclonal antibodies. A Race Against Time Although rare, Ebola infection figures prominently in the public’s fear of an infectious disease outbreak because of its marked, rapid, and fatal manifestation. This fear is fueled by our complete helplessness when it comes to fighting Ebola—there’s no vaccine, and any treatment options we do have only work if administered within minutes—or at most hours—after infection. Qiu et al. address this impotence head-on by demonstrating that administration of a three-antibody cocktail to macaques within 24 hours of infection yields 100% survival. The authors treated the macaques 24 or 48 hours after Ebola virus challenge with a virus-neutralizing antibody cocktail (ZMab). The three antibodies in the mix each bind to distinct regions of the Ebola envelop glycoprotein (GP) and show efficacy in small-animal models. When the cocktail was given at 24 hours after infection, 100% of the monkeys survived; if the same dose of the cocktail was administered 48 hours after infection, the survival rate was 50%. Surviving macaques developed both Ebola-specific antibodies and T cell responses, which suggests that the passive neutralizing antibody transfer may keep the virus in check long enough for endogenous immunity to take over. Timing, dose, and composition must be optimized before this therapy moves into humans, but the new findings add sand to the hourglass and provide hope for an expanded treatment window for Ebola virus infection. Ebola virus (EBOV) is considered one of the most aggressive infectious agents and is capable of causing death in humans and nonhuman primates (NHPs) within days of exposure. Recent strategies have succeeded in preventing acquisition of infection in NHPs after treatment; however, these strategies are only successful when administered before or minutes after infection. The present work shows that a combination of three neutralizing monoclonal antibodies (mAbs) directed against the Ebola envelope glycoprotein (GP) resulted in complete survival (four of four cynomolgus macaques) with no apparent side effects when three doses were administered 3 days apart beginning at 24 hours after a lethal challenge with EBOV. The same treatment initiated 48 hours after lethal challenge with EBOV resulted in two of four cynomolgus macaques fully recovering. The survivors demonstrated an EBOV-GP–specific humoral and cell-mediated immune response. These data highlight the important role of antibodies to control EBOV replication in vivo, and support the use of mAbs against a severe filovirus infection.
Scientific Reports | 2013
Xiangguo Qiu; Jonathan Audet; Gary Wong; Lisa Fernando; Alexander Bello; Stéphane Pillet; Judie B. Alimonti; Gary P. Kobinger
Ebola virus (EBOV) is one of the most lethal filoviruses, with mortality rates of up to 90% in humans. Previously, we demonstrated 100% and 50% survival of EBOV-infected cynomologus macaques with a combination of 3 EBOV-GP-specific monoclonal antibodies (ZMAb) administered at 24 or 48 hours post-exposure, respectively. The survivors demonstrated EBOV-GP–specific humoral and cell-mediated immune responses. In order to evaluate whether the immune response induced in NHPs during the ZMAb treatment and EBOV challenge is sufficient to protect survivors against a subsequent exposure, animals that survived the initial challenge were rechallenged at 10 or 13 weeks after the initial challenge. The animals rechallenged at 10 weeks all survived whereas 4 of 6 animals survived a rechallenge at 13 weeks. The data indicate that a robust immune response was generated during the successful treatment of EBOV-infected NHPs with EBOV, which resulted in sustained protection against a second lethal exposure.
Molecular Pharmaceutics | 2015
Jin Huk Choi; Kristina Jonsson-Schmunk; Xiangguo Qiu; Devon J. Shedlock; Jim Strong; Jason X. Xu; Kelly L. Michie; Jonathan Audet; Lisa Fernando; Mark J. Myers; David B. Weiner; Irnela Bajrovic; Lilian Q. Tran; Gary Wong; Alexander Bello; Gary P. Kobinger; Stephen C. Schafer; Maria A. Croyle
As the Ebola outbreak in West Africa continues and cases appear in the United States and other countries, the need for long-lasting vaccines to preserve global health is imminent. Here, we evaluate the long-term efficacy of a respiratory and sublingual (SL) adenovirus-based vaccine in non-human primates in two phases. In the first, a single respiratory dose of 1.4 × 109 infectious virus particles (ivp)/kg of Ad-CAGoptZGP induced strong Ebola glycoprotein (GP) specific CD8+ and CD4+ T cell responses and Ebola GP-specific antibodies in systemic and mucosal compartments and was partially (67%) protective from challenge 62 days after immunization. The same dose given by the SL route induced Ebola GP-specific CD8+ T cell responses similar to that of intramuscular (IM) injection, however, the Ebola GP-specific antibody response was low. All primates succumbed to infection. Three primates were then given the vaccine in a formulation that improved the immune response to Ebola in rodents. Three primates were immunized with 2.0 × 1010 ivp/kg of vaccine by the SL route. Diverse populations of polyfunctional Ebola GP-specific CD4+ and CD8+ T cells and significant anti-Ebola GP antibodies were present in samples collected 150 days after respiratory immunization. The formulated vaccine was fully protective against challenge 21 weeks after immunization. While diverse populations of Ebola GP-specific CD4+ T cells were produced after SL immunization, antibodies were not neutralizing and the vaccine was unprotective. To our knowledge, this is the first time that durable protection from a single dose respiratory adenovirus-based Ebola vaccine has been demonstrated in primates.
Nature Communications | 2017
Bryan D. Griffin; Kar Muthumani; Bryce M. Warner; Anna Majer; Mable Hagan; Jonathan Audet; Derek R. Stein; Charlene Ranadheera; Trina Racine; Marc-Antoine de La Vega; Jocelyne Piret; Stephanie Kucas; Kaylie N. Tran; Kathy L. Frost; Christine De Graff; Geoff Soule; Leanne Scharikow; Jennifer Scott; Gordon McTavish; Valerie Smid; Young K. Park; Joel N. Maslow; Niranjan Y. Sardesai; J. Joseph Kim; Xiaojian Yao; Alexander Bello; Robbin Lindsay; Guy Boivin; Stephanie A. Booth; Darwyn Kobasa
Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract.
Human Gene Therapy Methods | 2012
Feng Lin; Xuefei Shen; Gleb Kichaev; Janess Mendoza; Maria Yang; Philip Armendi; Jian Yan; Gary P. Kobinger; Alexander Bello; Amir S. Khan; Kate E. Broderick; Niranjan Y. Sardesai
In vivo electroporation (EP) is an efficient nonviral method for enhancing DNA vaccine delivery and immunogenicity in animals and humans. Intradermal delivery of DNA vaccines is an attractive strategy because of the immunocompetence of skin tissue. We have previously reported a minimally invasive surface intradermal EP (SEP) device for delivery of prophylactic DNA vaccines. Robust antibody responses were induced after vaccine delivery via surface EP in several tested animal models. Here we further investigated the optimal EP parameters for efficient delivery of DNA vaccines, with a specific emphasis on eliciting cellular immunity in addition to robust humoral responses. In a mouse model, using applied voltages of 10-100 V, transgene expression of green fluorescent protein and luciferase reporter genes increased significantly when voltages as low as 10 V were used as compared with DNA injection only. Tissue damage to skin was undetectable when voltages of 20 V and less were applied. However, inflammation and bruising became apparent at voltages above 40 V. Delivery of DNA vaccines encoding influenza virus H5 hemagglutinin (H5HA) and nucleoprotein (NP) of influenza H1N1 at applied voltages of 10-100 V elicited robust and sustained antibody responses. In addition, low-voltage (less than 20 V) EP elicited higher and more sustained cellular immune responses when compared with the higher voltage (above 20 V) EP groups after two immunizations. The data confirm that low-voltage EP, using the SEP device, is capable of efficient delivery of DNA vaccines into the skin, and establishes that these parameters are sufficient to elicit both robust and sustainable humoral as well as cellular immune responses without tissue damage. The SEP device, functioning within these parameters, may have important clinical applications for delivery of prophylactic DNA vaccines against diseases such as HIV infection, malaria, and tuberculosis that require both cellular and humoral immune responses for protection.
Science Translational Medicine | 2016
Xiangguo Qiu; Jonathan Audet; Ming Lv; Shihua He; Gary Wong; Haiyan Wei; Longlong Luo; Lisa Fernando; Andrea Kroeker; Hugues Fausther Bovendo; Alexander Bello; Feng Li; Pei Ye; Michael Jacobs; Giuseppe Ippolito; Erica Ollmann Saphire; Shengli Bi; Beifen Shen; George F. Gao; Larry Zeitlin; Jiannan Feng; Boyan Zhang; Gary P. Kobinger
A two–monoclonal antibody cocktail protects nonhuman primates against Ebola virus 3 days after lethal exposure. One-two punch for Ebola Antibody cocktails are an appealing therapeutic option for emerging infections such as the recent Ebola virus outbreak in West Africa because of their scalability and specificity. Qiu et al. report that the antibody cocktail used in Ebola virus–infected patients can be further simplified to only two antibodies and that these antibodies can be produced in engineered Chinese hamster ovary cells. This cocktail protected nonhuman primates against the virus responsible for the 2014–2015 outbreak up to 3 days after exposure. Combining these antibodies with those specific for other strains may lead to a broad ebolavirus therapy. The 2014–2015 Ebola virus (EBOV) outbreak in West Africa highlighted the urgent need for specific therapeutic interventions for infected patients. The human-mouse chimeric monoclonal antibody (mAb) cocktail ZMapp, previously shown to be efficacious in EBOV (variant Kikwit) lethally infected nonhuman primates (NHPs) when administration was initiated up to 5 days, was used in some patients during the outbreak. We show that a two-antibody cocktail, MIL77E, is fully protective in NHPs when administered at 50 mg/kg 3 days after challenge with a lethal dose of EBOV variant Makona, the virus responsible for the ongoing 2014–2015 outbreak, whereas a similar formulation of ZMapp protected two of three NHPs. The chimeric MIL77E mAb cocktail is produced in engineered Chinese hamster ovary cells and is based on mAbs c13C6 and c2G4 from ZMapp. The use of only two antibodies in MIL77E opens the door to a pan-ebolavirus cocktail.
Scientific Reports | 2011
Shinya Kasamatsu; Akira Hachiya; Tsutomu Fujimura; Penkanok Sriwiriyanont; Keiichi Haketa; Marty O. Visscher; William J. Kitzmiller; Alexander Bello; Takashi Kitahara; Gary P. Kobinger; Yoshinori Takema
UVB-induced cutaneous photodamage/photoaging is characterized by qualitative and quantitative deterioration in dermal extracellular matrix (ECM) components such as collagen and elastic fibers. Disappearance of microfibrillar-associated protein 4 (MFAP-4), a possible limiting factor for cutaneous elasticity, was documented in photoaged dermis, but its function is poorly understood. To characterize its possible contribution to photoprotection, MFAP-4 expression was either augmented or inhibited in a human skin xenograft photodamage murine model and human fibroblasts. Xenografted skin with enhanced MFAP-4 expression was protected from UVB-induced photodamage/photoaging accompanied by the prevention of ECM degradation and aggravated elasticity. Additionally, remarkably increased or decreased fibrillin-1-based microfibril development was observed when fibroblasts were treated with recombinant MFAP-4 or with MFAP-4-specific siRNA, respectively. Immunoprecipitation analysis confirmed direct interaction between MFAP-4 and fibrillin-1. Taken together, our findings reveal the essential role of MFAP-4 in photoprotection and offer new therapeutic opportunities to prevent skin-associated pathologies.
Vaccine | 2012
Xuefei Shen; Jonas Söderholm; Feng Lin; Gary P. Kobinger; Alexander Bello; Derek A. Gregg; Kate E. Broderick; Niranjan Y. Sardesai
Alternative DNA vaccine constructs such as fully synthetic linear expressing cassettes (LECs) offer the advantage of accelerated manufacturing techniques as well as the lack of both antibiotic resistance genes and bacterial contaminants. The speed of manufacture makes LEC technology a possible future vaccination strategy for pandemic influenza outbreaks. Previously, we reported on a novel concept of DNA delivery to dermal tissue by a minimally invasive electroporation (EP) surface device powered using low voltage parameters. This device allows electroporation without penetration of electrodes into the skin. In addition to enhancing the delivery of traditional plasmid DNA vaccines, this device may also offer a safe, tolerable and efficient method to administer LECs. To assess immunogenicity and efficacy of EP-enhanced LEC delivery in mice, we designed and tested two influenza antigens in the form of LEC constructs delivered using the newly developed surface dermal EP device. Strong CTL and antibody responses were induced by the LEC versions of the DNA vaccine. When challenged with A/Canada/AB/RV1532/2009 viruses, mice immunized with LEC encoding the M2 and NP antigens recovered faster than naïve or mice immunized ID without EP. Mice immunized with equal-molar doses of LEC encoding the M2 and NP antigens demonstrated 100% survival following a lethal (100× LD50) challenge of the heterologuos and highly pathogenic H5N1 influenza virus (A/Vietnam/1203/04). These results suggest that influenza DNA vaccines based on LEC technology combined with the surface delivery platform are capable of fully protecting mice in a lethal challenge and the LEC based DNA constructs may serve as viable vaccine candidates.
Journal of Investigative Dermatology | 2011
Penkanok Sriwiriyanont; Akira Hachiya; William L. Pickens; Shigeru Moriwaki; Takashi Kitahara; Marty O. Visscher; William J. Kitzmiller; Alexander Bello; Yoshinori Takema; Gary P. Kobinger
The hair follicle has a unique dynamic property to cyclically regenerate throughout life. Despite significant progress in hair structure and hair shape determination using animal models, the mechanisms controlling the architecture and the shape of the human hair remain largely unexplored. In this study, comparison of the genetic expression of several human genes, especially those involved in growth, development, and differentiation, between Caucasian curly hair and naturally straight hair was performed. Thereafter, analyses using human recombinant and lentiviral vector technologies were conducted to further dissect and elucidate a molecular mechanism that regulates hair growth and development, particularly in controlling the shape of the hair shaft. Overexpression of IGF-binding protein 5 (IGFBP-5) in the human hair xenografts obtained from straight- and curly-haired individuals was found to result in the decreased expression of several extracellular matrix proteins and disassembly of adhesional junctions, resulting in twisted hair shafts as well as an unusual deposition of hair cuticle that may be derived from the disturbance of normal proliferation and differentiation. This study provides evidence that IGFBP-5 has an effect on human hair shape, and that lentiviral transduction regimen can be used for functional analysis of genes involved in human hair morphogenesis.
Human Gene Therapy | 2011
Zhujun Ao; Xiaoxia Wang; Alexander Bello; Kallesh Danappa Jayappa; Zhe Yu; Keith R. Fowke; Xinying He; Xi Chen; Junhua Li; Gary P. Kobinger; Xiaojian Yao
In this study, we characterized the anti-HIV activities of various R88-APOBEC3G (R88-A3G) mutant fusion proteins in which each A3G mutant was fused with a virus-targeting polypeptide (R14-88, hereafter named R88) derived from HIV-1 Vpr. Our results show that the introduction of the deaminase-defective mutant E259Q into R88-A3G did not affect the virion incorporation of this mutant but blocked the proteins ability to inhibit HIV-1 infection. Our data also reveal that the antiviral effect of A3GY124A, a previously described A3G virus-packaging mutant, was completely rescued when the mutant was fused with R88. In an attempt to identify the most potent R88-A3G fusion proteins against HIV-1 infection, we introduced two Vif-binding mutants (D128K and P129A) into the R88-A3G fusion protein and showed that both R88-A3GD128K and R88-A3GP129A possessed very potent anti-HIV activity. When R88-A3GP129A was transduced into CD4(+) C8166 T cells, HIV-1 infection was completely abolished for at least 24 days. In an attempt to further test the anti-HIV effect of this mutant in primary human HIV susceptible cells, we introduced R88-A3GP129A into human peripheral blood mononuclear cells (PBMCs) and macrophages with a recombinant adeno-associated virus (rAAV2/5) vector. The results demonstrate that a significant inhibition of HIV-1 infection was observed in the transduced PBMCs and macrophages. These results provide evidence for the feasibility of an R88-A3G-based anti-HIV strategy. The further optimization of this system will contribute to the development of new anti-HIV gene therapy approaches.