Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Betekhtin is active.

Publication


Featured researches published by Alexander Betekhtin.


Annals of Botany | 2012

Evolution and taxonomic split of the model grass Brachypodium distachyon

Pilar Catalán; Jochen Müller; Robert Hasterok; Glyn Jenkins; Luis A. J. Mur; Tim Langdon; Alexander Betekhtin; Dorota Siwinska; Manuel Pimentel; Diana López-Álvarez

BACKGROUND AND AIMS Brachypodium distachyon is being widely investigated across the world as a model plant for temperate cereals. This annual plant has three cytotypes (2n = 10, 20, 30) that are still regarded as part of a single species. Here, a multidisciplinary study has been conducted on a representative sampling of the three cytotypes to investigate their evolutionary relationships and origins, and to elucidate if they represent separate species. METHODS Statistical analyses of 15 selected phenotypic traits were conducted in individuals from 36 lines or populations. Cytogenetic analyses were performed through flow cytometry, fluorescence in situ hybridization (FISH) with genomic (GISH) and multiple DNA sequences as probes, and comparative chromosome painting (CCP). Phylogenetic analyses were based on two plastid (ndhF, trnLF) and five nuclear (ITS, ETS, CAL, DGAT, GI) genes from different Brachypodium lineages, whose divergence times and evolutionary rates were estimated. KEY RESULTS The phenotypic analyses detected significant differences between the three cytotypes and demonstrated stability of characters in natural populations. Genome size estimations, GISH, FISH and CCP confirmed that the 2n = 10 and 2n = 20 cytotypes represent two different diploid taxa, whereas the 2n = 30 cytotype represents the allotetraploid derived from them. Phylogenetic analysis demonstrated that the 2n = 20 and 2n = 10 cytotypes emerged from two independent lineages that were, respectively, the maternal and paternal genome donors of the 2n = 30 cytotype. The 2n = 20 lineage was older and mutated significantly faster than the 2n = 10 lineage and all the core perennial Brachypodium species. CONCLUSIONS The substantial phenotypic, cytogenetic and molecular differences detected among the three B. distachyon sensu lato cytotypes are indicative of major speciation processes within this complex that allow their taxonomic separation into three distinct species. We have kept the name B. distachyon for the 2n = 10 cytotype and have described two novel species as B. stacei and B. hybridum for, respectively, the 2n = 20 and 2n = 30 cytotypes.


PLOS ONE | 2010

An integrated physical, genetic and cytogenetic map of Brachypodium distachyon, a model system for grass research.

Melanie Febrer; Jose Luis Goicoechea; Jonathan Wright; Neil McKenzie; Xiang Song; Jinke Lin; Kristi Collura; Marina Wissotski; Yeisoo Yu; Jetty S. S. Ammiraju; Elzbieta Wolny; Dominika Idziak; Alexander Betekhtin; Dave Kudrna; Robert Hasterok; Rod A. Wing; Michael W. Bevan

The pooid subfamily of grasses includes some of the most important crop, forage and turf species, such as wheat, barley and Lolium. Developing genomic resources, such as whole-genome physical maps, for analysing the large and complex genomes of these crops and for facilitating biological research in grasses is an important goal in plant biology. We describe a bacterial artificial chromosome (BAC)-based physical map of the wild pooid grass Brachypodium distachyon and integrate this with whole genome shotgun sequence (WGS) assemblies using BAC end sequences (BES). The resulting physical map contains 26 contigs spanning the 272 Mb genome. BES from the physical map were also used to integrate a genetic map. This provides an independent vaildation and confirmation of the published WGS assembly. Mapped BACs were used in Fluorescence In Situ Hybridisation (FISH) experiments to align the integrated physical map and sequence assemblies to chromosomes with high resolution. The physical, genetic and cytogenetic maps, integrated with whole genome shotgun sequence assemblies, enhance the accuracy and durability of this important genome sequence and will directly facilitate gene isolation.


Chromosoma | 2011

Painting the chromosomes of Brachypodium—current status and future prospects

Dominika Idziak; Alexander Betekhtin; Elzbieta Wolny; Karolina Lesniewska; Jonathan Wright; Melanie Febrer; Michael W. Bevan; Glyn Jenkins; Robert Hasterok

Chromosome painting is one of the most powerful and spectacular tools of modern molecular cytogenetics, enabling complex analyses of nuclear genome structure and evolution. For many years, this technique was restricted to the study of mammalian chromosomes, as it failed to work in plant genomes due mainly to the presence of large amounts of repetitive DNA common to all the chromosomes of the complement. The availability of ordered, chromosome-specific BAC clones of Arabidopsis thaliana containing relatively little repetitive genomic DNA enabled the first chromosome painting in dicotyledonous plants. Here, we show for the first time chromosome painting in three different cytotypes of a monocotyledonous plant—the model grass, Brachypodium distachyon. Possible directions of further detailed studies are proposed, such as the evolution of grass karyotypes, the behaviour of meiotic chromosomes, and the analysis of chromosome distribution at interphase.


PLOS ONE | 2012

A DNA barcoding method to discriminate between the model plant Brachypodium distachyon and its close relatives B. stacei and B. hybridum (Poaceae).

Diana López-Álvarez; María Luisa López-Herránz; Alexander Betekhtin; Pilar Catalán

Background Brachypodium distachyon s. l. has been widely investigated across the world as a model plant for temperate cereals and biofuel grasses. However, this annual plant shows three cytotypes that have been recently recognized as three independent species, the diploids B. distachyon (2n = 10) and B. stacei (2n = 20) and their derived allotetraploid B. hybridum (2n = 30). Methodology/Principal Findings We propose a DNA barcoding approach that consists of a rapid, accurate and automatable species identification method using the standard DNA sequences of complementary plastid (trnLF) and nuclear (ITS, GI) loci. The highly homogenous but largely divergent B. distachyon and B. stacei diploids could be easily distinguished (100% identification success) using direct trnLF (2.4%), ITS (5.5%) or GI (3.8%) sequence divergence. By contrast, B. hybridum could only be unambiguously identified through the use of combined trnLF+ITS sequences (90% of identification success) or by cloned GI sequences (96.7%) that showed 5.4% (ITS) and 4% (GI) rate divergence between the two parental sequences found in the allopolyploid. Conclusion/Significance Our data provide an unbiased and effective barcode to differentiate these three closely-related species from one another. This procedure overcomes the taxonomic uncertainty generated from methods based on morphology or flow cytometry identifications that have resulted in some misclassifications of the model plant and its allies. Our study also demonstrates that the allotetraploid B. hybridum has resulted from bi-directional crosses of B. distachyon and B. stacei plants acting either as maternal or paternal parents.


PLOS ONE | 2014

Reconstructing the Evolution of Brachypodium Genomes Using Comparative Chromosome Painting.

Alexander Betekhtin; Glyn Jenkins; Robert Hasterok

Brachypodium distachyon is a model for the temperate cereals and grasses and has a biology, genomics infrastructure and cytogenetic platform fit for purpose. It is a member of a genus with fewer than 20 species, which have different genome sizes, basic chromosome numbers and ploidy levels. The phylogeny and interspecific relationships of this group have not to date been resolved by sequence comparisons and karyotypical studies. The aims of this study are not only to reconstruct the evolution of Brachypodium karyotypes to resolve the phylogeny, but also to highlight the mechanisms that shape the evolution of grass genomes. This was achieved through the use of comparative chromosome painting (CCP) which hybridises fluorescent, chromosome-specific probes derived from B. distachyon to homoeologous meiotic chromosomes of its close relatives. The study included five diploids (B. distachyon 2n = 10, B. sylvaticum 2n = 18, B. pinnatum 2n = 16; 2n = 18, B. arbuscula 2n = 18 and B. stacei 2n = 20) three allotetraploids (B. pinnatum 2n = 28, B. phoenicoides 2n = 28 and B. hybridum 2n = 30), and two species of unknown ploidy (B. retusum 2n = 38 and B. mexicanum 2n = 40). On the basis of the patterns of hybridisation and incorporating published data, we propose two alternative, but similar, models of karyotype evolution in the genus Brachypodium. According to the first model, the extant genome of B. distachyon derives from B. mexicanum or B. stacei by several rounds of descending dysploidy, and the other diploids evolve from B. distachyon via ascending dysploidy. The allotetraploids arise by interspecific hybridisation and chromosome doubling between B. distachyon and other diploids. The second model differs from the first insofar as it incorporates an intermediate 2n = 18 species between the B. mexicanum or B. stacei progenitors and the dysploidic B. distachyon.


PLOS ONE | 2016

Spatial Distribution of Selected Chemical Cell Wall Components in the Embryogenic Callus of Brachypodium distachyon.

Alexander Betekhtin; Magdalena Rojek; Anna Milewska-Hendel; Robert Gawecki; Jagna Karcz; Ewa U. Kurczyńska; Robert Hasterok

Brachypodium distachyon L. Beauv. (Brachypodium) is a species that has become an excellent model system for gaining a better understanding of various areas of grass biology and improving plant breeding. Although there are some studies of an in vitro Brachypodium culture including somatic embryogenesis, detailed knowledge of the composition of the main cell wall components in the embryogenic callus in this species is missing. Therefore, using the immunocytochemical approach, we targeted 17 different antigens of which five were against the arabinogalactan proteins (AGP), three were against extensins, six recognised pectic epitopes and two recognised hemicelluloses. These studies were complemented by histological and scanning electron microscopy (SEM) analyses. We revealed that the characteristic cell wall components of Brachypodium embryogenic calli are AGP epitopes that are recognised by the JIM16 and LM2 antibodies, an extensin epitope that is recognised by the JIM11 antibody and a pectic epitopes that is recognised by the LM6 antibody. Furthermore, we demonstrated that AGPs and pectins are the components of the extracellular matrix network in Brachypodium embryogenic culture. Additionally, SEM analysis demonstrated the presence of an extracellular matrix on the surface of the calli cells. In conclusion, the chemical compositions of the cell walls and ECMSN of Brachypodium callus show spatial differences that correlate with the embryogenic character of the cells. Thus, the distribution of pectins, AGPs and hemicelluloses can be used as molecular markers of embryogenic cells. The presented data extends the knowledge about the chemical composition of the embryogenic callus cells of Brachypodium.


International Journal of Molecular Sciences | 2018

Organ and Tissue-Specific Localisation of Selected Cell Wall Epitopes in the Zygotic Embryo of Brachypodium distachyon

Alexander Betekhtin; Anna Milewska-Hendel; Joanna Lusinska; Lukasz Chajec; Ewa U. Kurczyńska; Robert Hasterok

The plant cell wall shows a great diversity regarding its chemical composition, which may vary significantly even during different developmental stages. In this study, we analysed the distribution of several cell wall epitopes in embryos of Brachypodium distachyon (Brachypodium). We also described the variations in the nucleus shape and the number of nucleoli that occurred in some embryo cells. The use of transmission electron microscopy, and histological and immunolocalisation techniques permitted the distribution of selected arabinogalactan proteins, extensins, pectins, and hemicelluloses on the embryo surface, internal cell compartments, and in the context of the cell wall ultrastructure to be demonstrated. We revealed that the majority of arabinogalactan proteins and extensins were distributed on the cell surface and that pectins were the main component of the seed coat and other parts, such as the mesocotyl cell walls and the radicula. Hemicelluloses were localised in the cell wall and outside of the radicula protodermis, respectively. The specific arrangement of those components may indicate their significance during embryo development and seed germination, thus suggesting the importance of their protective functions. Despite the differences in the cell wall composition, we found that some of the antibodies can be used as markers to identify specific cells and the parts of the developing Brachypodium embryo.


International Journal of Molecular Sciences | 2018

5-Azacitidine Induces Cell Death in a Tissue Culture of Brachypodium distachyon

Alexander Betekhtin; Anna Milewska-Hendel; Lukasz Chajec; Magdalena Rojek; Katarzyna Nowak; Jolanta Kwasniewska; Elzbieta Wolny; Ewa U. Kurczyńska; Robert Hasterok

Morphological and histological observations revealed that, at a concentration of 50 µM, 5-azacitidine (5-azaC) totally inhibited the induction of embryogenic masses (EM), while the cultivation of explants (zygotic embryos; ZEs) in the presence of 5 µM of 5-azaC led to the formation of a callus with EM in 10% of the cases. Transmission electron microscopy (TEM) analyzes revealed the presence of the morphological and ultrastructural features that are typical for the vacuolar type of cell death in the callus cells that were treated. A TUNEL assay confirmed the presence of DNA double-strand breaks for the callus cells that had been treated with both 5 and 50 µM 5-azaC concentrations. Analysis of the gene expression of selected cell death markers demonstrated a reduced expression of metacaspase, protein executer 1 (EX1), and thioredoxin (TRX) in the callus cells that had been treated compared to the control culture. The strongest increase in the gene activity was characteristic for glutathione S-transferase (GST). Our studies also included an analysis of the distribution of some arabinogalactan proteins (AGPs) and extensin epitopes, which can be used as markers of cells that are undergoing death in a Brachypodium distachyon tissue culture.


PLOS ONE | 2017

Nuclear genome stability in long-term cultivated callus lines of Fagopyrum tataricum (L.) Gaertn

Alexander Betekhtin; Magdalena Rojek; Joanna Jaskowiak; Anna Milewska-Hendel; Jolanta Kwasniewska; Yulia Kostyukova; Ewa U. Kurczyńska; Natalya Rumyantseva; Robert Hasterok

Long-term cultivated Fagopyrum tataricum (L.) Gaertn. (Tartary buckwheat) morphogenic and non-morphogenic callus lines are interesting systems for gaining a better understanding of the mechanisms that are responsible for the genetic stability and instability of a plant tissue culture. In this work, we used histological sections and transmission electron microscopy to identify and describe the morphology of the nuclei of all of the analysed callus lines. We demonstrated that the embryogenic callus cells had prominent round nuclei that did not contain heterochromatin clumps in contrast to the non-morphogenic callus lines, in which we found nuclei that had multiple lobes. Flow cytometry analysis revealed significant differences in the relative DNA content between the analysed calli. All of the analysed morphogenic callus lines had peaks from 2C to 8C as compared to the non-morphogenic callus lines, whose peaks did not reflect any regular DNA content and exceeded 8C and 16C for the line 6p1 and 16C and 32C for the callus line 10p2A. The results showed that non-morphogenic calli are of an aneuploid nature. The TUNEL test enabled us to visualise the nuclei that had DNA fragmentation in both the morphogenic and non-morphogenic lines. We revealed significantly higher frequencies of positively labelled nuclei in the non-morphogenic lines than in the morphogenic lines. In the case of the morphogenic lines, the highest observed frequency of TUNEL-positive nuclei was 7.7% for lines 2–3. In the non-morphogenic calli, the highest level of DNA damage (68.5%) was revealed in line 6p1. These results clearly indicate greater genome stability in the morphogenic lines.


Archive | 2015

Molecular Cytogenetics in the Genus Brachypodium

Robert Hasterok; Alexander Betekhtin; Natalia Borowska-Zuchowska; Agnieszka Braszewska-Zalewska; Dominika Idziak-Helmcke; Ewa Robaszkiewicz; Elzbieta Wolny

Cytogenetics is the part of biology that focuses on the study of nuclear genomes at the microscopic level. In its modern incarnation, which is known as molecular cytogenetics, it represents a multidiscipline that amalgamates the various methodological approaches of cytology and molecular genetics as well as advanced microscopy and digital image processing. One of the most spectacular molecular cytogenetic techniques is fluorescence in situ hybridisation, which offers unprecedented insights into the various aspects of nuclear genome organisation at the level of mitotic and meiotic chromosomes and in the interphase nucleus. A complementary cytomolecular approach that utilises fluorescent antibodies that target methylated DNA or chemically modified histones in situ gives in-depth insights into the epigenetic modifications of chromatin that govern the modulation of the gene expression.

Collaboration


Dive into the Alexander Betekhtin's collaboration.

Top Co-Authors

Avatar

Robert Hasterok

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Elzbieta Wolny

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Anna Milewska-Hendel

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Ewa U. Kurczyńska

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Magdalena Rojek

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna Lusinska

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominika Idziak

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Dominika Idziak-Helmcke

University of Silesia in Katowice

View shared research outputs
Researchain Logo
Decentralizing Knowledge