Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander C. Lichtler is active.

Publication


Featured researches published by Alexander C. Lichtler.


Journal of Bone and Mineral Research | 2002

Use of Type I Collagen Green Fluorescent Protein Transgenes to Identify Subpopulations of Cells at Different Stages of the Osteoblast Lineage

Ivo Kalajzic; Zana Kalajzic; M. Kaliterna; Gloria Gronowicz; Stephen H. Clark; Alexander C. Lichtler; David W. Rowe

Green fluorescent protein (GFP)‐expressing transgenic mice were produced containing a 3.6‐kilobase (kb; pOBCol3.6GFPtpz) and a 2.3‐kb (pOBCol2.3GFPemd) rat type I collagen (Col1a1) promoter fragment. The 3.6‐kb promoter directed strong expression of GFP messenger RNA (mRNA) to bone and isolated tail tendon and lower expression in nonosseous tissues. The 2.3‐kb promoter expressed the GFP mRNA in the bone and tail tendon with no detectable mRNA elsewhere. The pattern of fluorescence was evaluated in differentiating calvarial cell (mouse calvarial osteoblast cell [mCOB]) and in marrow stromal cell (MSC) cultures derived from the transgenic mice. The pOBCol3.6GFPtpz‐positive cells first appeared in spindle‐shaped cells before nodule formation and continued to show a strong signal in cells associated with bone nodules. pOBCol2.3GFPemd fluorescence first appeared in nodules undergoing mineralization. Histological analysis showed weaker pOBCol3.6GFPtpz‐positive fibroblastic cells in the periosteal layer and strongly positive osteoblastic cells lining endosteal and trabecular surfaces. In contrast, a pOBCol2.3GFPemd signal was limited to osteoblasts and osteocytes without detectable signal in periosteal fibroblasts. These findings suggest that Col1a1GFP transgenes are marking different subpopulations of cells during differentiation of skeletal osteoprogenitors. With the use of other promoters and color isomers of GFP, it should be possible to develop experimental protocols that can reflect the heterogeneity of cell differentiation in intact bone. In primary culture, this approach will afford isolation of subpopulations of these cells for molecular and cellular analysis.


PLOS ONE | 2010

Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells.

Hui Zeng; Min Guo; Kristen Martins-Taylor; Xiaofang Wang; Zheng Zhang; Jung W. Park; Shuning Zhan; Mark S. Kronenberg; Alexander C. Lichtler; Hui Xia Liu; Fang Ping Chen; Lixia Yue; Xue Jun Li; Ren-He Xu

Background Directed differentiation of human induced pluripotent stem cells (hiPSC) into functional, region-specific neural cells is a key step to realizing their therapeutic promise to treat various neural disorders, which awaits detailed elucidation. Methodology/Principal Findings We analyzed neural differentiation from various hiPSC lines generated by others and ourselves. Although heterogeneity in efficiency of neuroepithelial (NE) cell differentiation was observed among different hiPSC lines, the NE differentiation process resembles that from human embryonic stem cells (hESC) in morphology, timing, transcriptional profile, and requirement for FGF signaling. NE cells differentiated from hiPSC, like those from hESC, can also form rostral phenotypes by default, and form the midbrain or spinal progenitors upon caudalization by morphogens. The rostrocaudal neural progenitors can further mature to develop forebrain glutamatergic projection neurons, midbrain dopaminergic neurons, and spinal motor neurons, respectively. Typical ion channels and action potentials were recorded in the hiPSC-derived neurons. Conclusions/Significance Our results demonstrate that hiPSC, regardless of how they were derived, can differentiate into a spectrum of rostrocaudal neurons with functionality, which supports the considerable value of hiPSC for study and treatment of patient-specific neural disorders.


Journal of Bone and Mineral Research | 2001

Conditional Ablation of the Osteoblast Lineage in Col2.3Δtk Transgenic Mice

Dora Višnjić; Ivo Kalajzic; Gloria Gronowicz; Hector L. Aguila; Stephen H. Clark; Alexander C. Lichtler; David W. Rowe

Two transgenic mouse lines were generated with a DNA construct bearing a 2.3‐kilobase (kb) fragment of the rat α1 type I collagen promoter driving a truncated form of the herpes thymidine kinase gene (Col2.3Δtk). Expression of the transgene was found in osteoblasts coincident with other genetic markers of early osteoblast differentiation. Mice treated with ganciclovir (GCV) for 16 days displayed extensive destruction of the bone lining cells and decreased osteoclast number. In addition, a dramatic decrease in bone marrow elements was observed, which was more severe in the primary spongiosum and marrow adjacent to the diaphyseal endosteal bone. Immunostaining for transgene expression within the bone marrow was negative and marrow stromal cell cultures developed normally in the presence of GCV until the point of early osteoblast differentiation. Our findings suggest that the early differentiating osteoblasts are necessary for the maintenance of osteoclasts and hematopoiesis. Termination of GCV treatment produced an exaggerated response of new bone formation in cortical and trabecular bone. The Col2.3Δtk mouse should be a useful model to define the interrelation between bone and marrow elements as well as a model to analyze the molecular and cellular events associated with a defined wave of osteogenesis on termination of GCV treatment.


Journal of Bone and Mineral Research | 2001

Col1a1-driven transgenic markers of osteoblast lineage progression

S. Dacic; Ivo Kalajzic; Dora Višnjić; Alexander C. Lichtler; David W. Rowe

The modular organization of the type I collagen promoter allows creation of promoter‐reporter constructs with preferential activity in different type I collagen‐producing tissues that might be useful to mark cells at different stages of osteoblastic differentiation. Primary marrow stromal cell (MSC) and mouse calvarial osteoblast (mCOB) cultures were established from transgenic mice harboring different Col1a1 promoter fragments driving chloramphenicol acetyltransferase (CAT). In these models, Col1a1 messenger RNA (mRNA) and alkaline phosphatase (ALP) are the first markers of differentiation appearing soon after the colonies develop. Bone sialoprotein (BSP) is detected 2‐3 days later, followed by osteocalcin (OC) expression and nodule mineralization. A 3.6 Col1a1 fragment (ColCAT3.6) initiated activity concomitant with ALP staining and type I collagen mRNA expression. In contrast, a 2.3 Col1a1 fragment (ColCAT2.3) became active coincident with BSP expression. The pattern of transgene expression assessed by immunostaining was distinctly different. ColCAT3.6 was expressed within and at the periphery of developing nodules whereas the ColCAT2.3 expression was restricted to the differentiated nodules. The feasibility of using green fluorescent protein (GFP) as a marker of osteoblast differentiation was evaluated in ROS17/2.8 cells. A 2.3‐kilobase (kb) Col1a1 promoter driving GFP (pOB4Col2.3GLP) was stably transfected into the cell line and positive clones were selected. Subcultures lost and then regained GFP expression that was localized in small clusters of cells throughout the culture. This suggests that expression from the 2.3‐kb Col1A1 fragment is determined by the state of differentiation of the ROS17/2.8 cells. Col1a1 transgenes should be useful in appreciating the heterogeneity of a primary or immortalized culture undergoing osteoblastic differentiation.


Journal of Biological Chemistry | 1996

Identification of a TAAT-containing Motif Required for High Level Expression of the COL1A1 Promoter in Differentiated Osteoblasts of Transgenic Mice

Milan Dodig; Mark S. Kronenberg; Antonio Bedalov; Barbara E. Kream; Gloria Gronowicz; Stephen H. Clark; K. Mack; Yi Hsin Liu; Rob Maxon; Zhong Zong Pan; William B. Upholt; David W. Rowe; Alexander C. Lichtler

Our previous studies have shown that the 49-base pair region of promoter DNA between −1719 and −1670 base pairs is necessary for transcription of the rat COL1A1 gene in transgenic mouse calvariae. In this study, we further define this element to the 13-base pair region between −1683 and −1670. This element contains a TAAT motif that binds homeodomain-containing proteins. Site-directed mutagenesis of this element in the context of a COL1A1-chloramphenicol acetyltransferase construct extending to −3518 base pairs decreased the ratio of reporter gene activity in calvariae to tendon from 3:1 to 1:1, suggesting a preferential effect on activity in calvariae. Moreover, chloramphenicol acetyltransferase-specific immunofluorescence microscopy of transgenic calvariae showed that the mutation preferentially reduced levels of chloramphenicol acetyltransferase protein in differentiated osteoblasts. Gel mobility shift assays demonstrate that differentiated osteoblasts contain a nuclear factor that binds to this site. This binding activity is not present in undifferentiated osteoblasts. We show that Msx2, a homeodomain protein, binds to this motif; however, Northern blot analysis revealed that Msx2 mRNA is present in undifferentiated bone cells but not in fully differentiated osteoblasts. In addition, cotransfection studies in ROS 17/2.8 osteosarcoma cells using an Msx2 expression vector showed that Msx2 inhibits a COL1A1 promoter-chloramphenicol acetyltransferase construct. Our results suggest that high COL1A1 expression in bone is mediated by a protein that is induced during osteoblast differentiation. This protein may contain a homeodomain; however, it is distinct from homeodomain proteins reported previously to be present in bone.


Frontiers in Bioscience | 2003

Transcriptional regulation of BMP-2 activated genes in osteoblasts using gene expression microarray analysis: role of Dlx2 and Dlx5 transcription factors.

S. E. Harris; Dayong Guo; Marie A. Harris; Arvind Krishnaswamy; Alexander C. Lichtler

This presentation will focus on using microarray data on a clonal osteoblast cell model to analyze the early BMP-2 responsive genes, as well as some of the later genes regulated by BMP2 during different phases of mineralization. We will focus on the early phases of gene expression that occur after BMP2 signaling from 30 min up to 1 day. The hypothesis is that understanding how these early genes are regulated during the initial multilayering and growth phase of osteoblasts will lead to models of how BMP activity stimulates cell growth, cell migration, multilayering, matrix deposition and remodeling phase that allows subsequent mineralization. The Dlx2 and Dlx5 homeobox genes have been shown to be critical for bone formation both in vitro and in vivo. Both Dlx 2 and Dlx5 are activated within 15-30 minutes after BMP2 addition to the mouse 2T3 osteoblast model and primary fetal rat calvarial osteoblasts. The Dlx2 and Dlx5 genes stay elevated in the presence of BMP2 for up to 5 days, a time when overt mineralization is just beginning. To understand the genomic network that Dlx5 and Dlx2 regulate at the transcription level, we have taken an approach where we use a specific transcription repressor protein, Engrailed, ligated to the Dlx5 homeodomain. The idea is that this Eng-Dlx5 protein will interact with Dlx5 and possibly Dlx2 and related Dlx- regulated genes in vivo and down-regulate their transcriptional initiation. Using a microarray approach with over 5,000 known genes we can identify the genes that are directly and indirectly regulated by Dlx5 and Dlx2. This will allow us to build an initial genomic network of Dlx- regulated genes at the transcriptional level. We will present our model and preliminary efforts at understanding the genomic network regulated by this important BMP2-regulated transcription factor class in osteoblast biology.


Developmental Biology | 2008

Expression and Function of Dlx Genes in the Osteoblast Lineage

Haitao Li; Inga Marijanović; Mark S. Kronenberg; Ivana Erceg; Mary Louise Stover; Dimitrios Velonis; Mina Mina; Jelica Gluhak Heinrich; Stephen E. Harris; William B. Upholt; Ivo Kalajzic; Alexander C. Lichtler

Our laboratory and others have shown that overexpression of Dlx5 stimulates osteoblast differentiation. Dlx5(-/-)/Dlx6(-/-) mice have more severe craniofacial and limb defects than Dlx5(-/-), some of which are potentially due to defects in osteoblast maturation. We wished to investigate the degree to which other Dlx genes compensate for the lack of Dlx5, thus allowing normal development of the majority of skeletal elements in Dlx5(-/-) mice. Dlx gene expression in cells from different stages of the osteoblast lineage isolated by FACS sorting showed that Dlx2, Dlx5 and Dlx6 are expressed most strongly in less mature osteoblasts, whereas Dlx3 is very highly expressed in differentiated osteoblasts and osteocytes. In situ hybridization and Northern blot analysis demonstrated the presence of endogenous Dlx3 mRNA within osteoblasts and osteocytes. Dlx3 strongly upregulates osteoblastic markers with a potency comparable to Dlx5. Cloned chick or mouse Dlx6 showed stimulatory effects on osteoblast differentiation. Our results suggest that Dlx2 and Dlx6 have the potential to stimulate osteoblastic differentiation and may compensate for the absence of Dlx5 to produce relatively normal osteoblastic differentiation in Dlx5 knockout mice, while Dlx3 may play a distinct role in late stage osteoblast differentiation and osteocyte function.


Journal of Bone and Mineral Research | 2002

Overexpression of Dlx5 in chicken calvarial cells accelerates osteoblastic differentiation

Tade Tadić; Milan Dodig; Ivana Erceg; Inga Marijanović; Mina Mina; Zana Kalajzic; Dimitrios Velonis; Mark S. Kronenberg; Robert A. Kosher; Deborah Ferrari; Alexander C. Lichtler

Our laboratory and others have shown that a homeodomain protein binding site plays an important role in transcription of the Col1a1 gene in osteoblasts. This suggests that homeodomain proteins have an important role in osteoblast differentiation. We have investigated the role of Dlx5 in osteoblastic differentiation. In situ hybridization studies indicated that Dlx5 is expressed in chick calvarial osteoblasts (cCOB) in vivo. Northern blot analysis indicated that Dlx5 expression in cultured cCOBs is induced concurrently with osteoblastic markers. To study the effect of overexpression of Dlx5 on osteoblast differentiation, we infected primary osteoblast cultures from 15‐day‐old embryonal chicken calvaria with replication competent retroviral vectors [RCASBP(A)] expressing Dlx5 or control replication competent avian splice acceptor brianhightiter polymerase subtype A [RCASBP(A)]. Expression of Col1a1, osteopontin, alkaline phosphatase, and osteocalcin messenger RNA (mRNA) occurred sooner and at higher levels in cultures infected with RCASBP(A)DLX5 than in RCASBP(A)‐infected cultures. Mineralization of Dlx5‐expressing cultures was evident by days 12‐14, and RCAS‐infected control osteoblasts did not begin to mineralize until day 17. Dlx5 also stimulated osteoblastic differentiation of calvarial cells that do not normally undergo osteoblastic differentiation in vitro. Our results suggest that Dlx5 plays an important role in inducing calvarial osteoblast differentiation.


Journal of Cellular Biochemistry | 2003

Stage specific inhibition of osteoblast lineage differentiation by FGF2 and noggin

Ivo Kalajzic; Zana Kalajzic; Marja M. Hurley; Alexander C. Lichtler; David W. Rowe

Fibroblast growth factor 2 (FGF2) and noggin are two unrelated ligands of two distinctly different signaling pathways that have a similar inhibitory effect on osteoblast differentiation. Because of their differences, we postulated that they probably acted at a different stage within the osteoprogenitor differentiation pathway. This study was performed on primary murine bone cell cultures under conditions where alkaline phosphatase (AP) and type I collagen expression (Col1a1) were observed by day 7 (preosteoblast stage), followed by bone syaloprotein (BSP) at day 11 (early osteoblast) and osteocalcin (OC) by day 15–18 (mature osteoblast stage). FGF2 completely inhibited expression of AP and the mRNA transcript for Col1a1, while noggin showed only a partial inhibition of these markers of preosteoblast differentiation. However, the markers of differentiated osteoblasts (BSP and OC) were completely inhibited in both the FGF2 and noggin treated cultures, suggesting that noggin acts at later point in the osteoprogenitor differentiation pathway than FGF2. To further verify that the inhibition was occurring at a different stage of osteoblasts development, primary cultures derived from transgenic mice harboring segments of the collagen promoter driving green fluorescent protein (GFP) that activate at different levels of osteoblast differentiation were analyzed. Consistent with the endogenous markers, pOBCol3.6GFP and pOBCOL2.3GFP transgene activity was completely inhibited by continuous addition of FGF2, while noggin showed partial inhibition of pOBCol3.6GFP and complete inhibition of the pOBCol2.3GFP transgene. Upon removal of either agent, endogenous and GFP markers of osteoblast differentiation reappeared although at a different temporal pattern. This work demonstrates that FGF2 and noggin can reversibly modulate osteoblast lineage differentiation at different maturational stages. These agents may be useful to enrich for and maintain a population of osteoprogenitor cells at a defined stage of differentiation. J. Cell. Biochem. 88: 1168–1176, 2003.


Molecular and Cellular Biology | 2001

Reduction of Target Gene Expression by a Modified U1 snRNA

S.A. Beckley; Peng Liu; Mary Louise Stover; Samuel I. Gunderson; Alexander C. Lichtler; David W. Rowe

ABSTRACT Although the primary function of U1 snRNA is to define the 5′ donor site of an intron, it can also block the accumulation of a specific RNA transcript when it binds to a donor sequence within its terminal exon. This work was initiated to investigate if this property of U1 snRNA could be exploited as an effective method for inactivating any target gene. The initial 10-bp segment of U1 snRNA, which is complementary to the 5′ donor sequence, was modified to recognize various target mRNAs (chloramphenicol acetyltransferase [CAT], β-galactosidase, or green fluorescent protein [GFP]). Transient cotransfection of reporter genes and appropriate U1 antitarget vectors resulted in >90% reduction of transgene expression. Numerous sites within the CAT transcript were suitable for targeting. The inhibitory effect of the U1 antitarget vector is directly related to the hybrid formed between the U1 vector and target transcripts and is dependent on an intact 70,000-molecular-weight binding domain within the U1 gene. The effect is long lasting when the target (CAT or GFP) and U1 antitarget construct are inserted into fibroblasts by stable transfection. Clonal cell lines derived from stable transfection with a pOB4GFP target construct and subsequently stably transfected with the U1 anti-GFP construct were selected. The degree to which GFP fluorescence was inhibited by U1 anti-GFP in the various clonal cell lines was assessed by fluorescence-activated cell sorter analysis. RNA analysis demonstrated reduction of the GFP mRNA in the nuclear and cytoplasmic compartment and proper 3′ cleavage of the GFP residual transcript. An RNase protection strategy demonstrated that the transfected U1 antitarget RNA level varied between 1 to 8% of the endogenous U1 snRNA level. U1 antitarget vectors were demonstrated to have potential as effective inhibitors of gene expression in intact cells.

Collaboration


Dive into the Alexander C. Lichtler's collaboration.

Top Co-Authors

Avatar

David W. Rowe

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Barbara E. Kream

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Mary Louise Stover

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Stephen H. Clark

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Mark S. Kronenberg

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivo Kalajzic

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Bedalov

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge