Alexander Couzis
City College of New York
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Couzis.
Langmuir | 2012
Jayant P. Rane; David Harbottle; Vincent Pauchard; Alexander Couzis; Sanjoy Banerjee
Asphaltenes constitute high molecular weight constituents of crude oils that are insoluble in n-heptane and soluble in toluene. They contribute to the stabilization of the water-in-oil emulsions formed during crude oil recovery and hinder drop-drop coalescence. As a result, asphaltenes unfavorably impact water-oil separation processes and consequently oil production rates. In view of this there is a need to better understand the physicochemical effects of asphaltenes at water-oil interfaces. This study elucidates aspects of these effects based on new data on the interfacial tension in such systems from pendant drop experiments, supported by results from nuclear magnetic resonance (NMR) and dynamic light scattering (DLS) studies. The pendant drop experiments using different asphaltene concentrations (mass fractions) and solvent viscosities indicate that the interfacial tension reduction kinetics at short times are controlled by bulk diffusion of the fraction of asphaltenes present as monomer. At low mass fractions much of the asphaltenes appear to be present as monomers, but at mass fractions greater than about 80 ppm they appear to aggregate into larger structures, a finding consistent with the NMR and DLS results. At longer times interfacial tension reduction kinetics are slower and no longer diffusion controlled. To investigate the controlling mechanisms at this later stage the pendant drop experiment was made to function in a fashion similar to a Langmuir trough with interfacial tension being measured during expansion of a droplet aged in various conditions. The interfacial tension was observed to depend on surface coverage and not on time. All observations indicate the later stage transition is to an adsorption barrier-controlled regime rather than to a conformational relaxation regime.
Langmuir | 2013
Jayant P. Rane; Vincent Pauchard; Alexander Couzis; Sanjoy Banerjee
In an earlier study, oil-water interfacial tension was measured by the pendant drop technique for a range of oil-phase asphaltene concentrations and viscosities. The interfacial tension was found to be related to the relative surface coverage during droplet expansion. The relationship was independent of aging time and bulk asphaltenes concentration, suggesting that cross-linking did not occur at the interface and that only asphaltene monomers were adsorbed. The present study extends this work to measurements of interfacial rheology with the same fluids. Dilatation moduli have been measured using the pulsating droplet technique at different frequencies, different concentrations (below and above CNAC), and different aging times. Care was taken to apply the technique in conditions where viscous and inertial effects are small. The elastic modulus increases with frequency and then plateaus to an asymptotic value. The asymptotic or instantaneous elasticity has been plotted against the interfacial tension, indicating the existence of a unique relationship, between them, independent of adsorption conditions. The relationship between interfacial tension and surface coverage is analyzed with a Langmuir equation of state. The equation of state also enabled the prediction of the observed relationship between the instantaneous elasticity and interfacial tension. The fit by a simple Langmuir equation of state (EOS) suggests minimal effects of aging and of nanoaggregates or gel formation at the interface. Only one parameter is involved in the fit, which is the surface excess coverage Γ∞ = 3.2 molecules/nm(2) (31.25 Å(2)/molecule). This value appears to agree with flat-on adsorption of monomeric asphaltene structures consisting of aromatic cores composed of an average of six fused rings and supports the hypothesis that nanoaggregates do not adsorb on the interface. The observed interfacial effects of the adsorbed asphaltenes, correlated by the Langmuir EOS, are consistent with the asphaltene aggregation behavior in the bulk fluid expected from the Yen-Mullins model.
Journal of Colloid and Interface Science | 2003
Nitin Kumar; Alexander Couzis; Charles Maldarelli
Super-spreading trisiloxane surfactants are a class of amphiphiles which consist of nonpolar trisiloxane headgroups ((CH3)3-Si-O)2-Si(CH3)(CH2)3-) and polar parts composed of between four and eight ethylene oxides (ethoxylates, -OCH2CH2-). Millimeter-sized aqueous drops of trisiloxane solutions at concentrations well above the critical aggregate concentration spread rapidly on very hydrophobic surfaces, completely wetting out at equilibrium. The wetting out can be understood as a consequence of the ability of the trisiloxanes at the advancing perimeter of the drop to adsorb at the air/aqueous and aqueous/hydrophobic solid interfaces and to reduce considerably the tensions of these interfaces, creating a positive spreading coefficient. The rapid spreading can be due to maintaining a positive spreading coefficient at the perimeter as the drop spreads. However, the air/aqueous and solid/aqueous interfaces at the perimeter are depleted of surfactant by interfacial expansion as the drop spreads. The spreading coefficient can remain positive if the rate of surfactant adsorption onto the solid and fluid surfaces from the spreading aqueous film at the perimeter exceeds the diluting effect due to the area expansion. This task is made more difficult by the fact that the reservoir of surfactant in the film is continually depleted by adsorption to the expanding interfaces. If the adsorption cannot keep pace with the area expansion at the perimeter, and the surface concentrations become reduced at the contact line, a negative spreading coefficient which retards the drop movement can develop. In this case, however, a Marangoni mechanism can account for the rapid spreading if the surface concentrations at the drop apex are assumed to remain high compared to the perimeter so that the drop is pulled out by the higher tension at the perimeter than at the apex. To maintain a high apex concentration, surfactant adsorption must exceed the rate of interfacial dilation at the apex due to the outward flow. This is conceivable because, unlike that at the contact line, the surfactant reservoir in the liquid at the drop center is not continually depleted by adsorption onto an expanding solid surface. In an effort to understand the rapid spreading, we measure the kinetic rate constants for adsorption of unaggregated trisiloxane surfactant from the sublayer to the air/aqueous surface. The kinetic rate of adsorption, computed assuming the bulk concentration of monomer to be uniform and undepleted, represents the fastest that surfactant monomer can adsorb onto the air/aqueous surface in the absence of direct adsorption of aggregates. The kinetic constants are obtained by measuring the dynamic tension relaxation as trisiloxanes adsorb onto a clean pendant bubble interface. We find that the rate of kinetic adsorption is only of the same order as the area expansion rates observed in superspreading, and therefore the unaggregated flux cannot maintain very high surface concentrations at the air/aqueous interface, either at the apex or at the perimeter. Hence in order to maintain either a positive spreading coefficient or a Marangoni gradient, the surfactant adsorptive flux needs to be augmented, and the direct adsorption of aggregates (which in the case of the trisiloxanes are bilayers and vesicles) is suggested as one possibility.
Langmuir | 2014
Vincent Pauchard; Jayant P. Rane; Sharli Zarkar; Alexander Couzis; Sanjoy Banerjee
Previous studies indicated that asphaltenes adsorbed as monomers on oil-water interfaces and the early stage kinetics of the process was controlled by diffusion and hence dependent on oil viscosity. By measuring interfacial tension (IFT) as a function of surface coverage during droplet expansions in pendant drop experiments, it was also concluded that the IFT data could be interpreted with a Langmuir equation of state (EoS), which was independent of oil viscosity, time of adsorption, and bulk asphaltenes concentration. The surface excess coverage was calculated to be ∼0.3 nm(2)/molecule, which suggested adsorption in face-on configuration of asphaltenes monomers at the interface and average PAH core per molecule of about 6 for the asphaltenes investigated, consistent with the Yen-Mullins model. The current study focuses on the kinetics of asphaltenes adsorption at longer times and higher interfacial coverage. Long-term IFT data have been measured by the pendant drop method for different asphaltenes concentrations and for different bulk viscosities of the oil phase (0.5-28 cP). The data indicate that when coverage reaches 35-40%, the adsorption rates slow down considerably compared to the diffusion-controlled rates at the very early stages. The surface pressure increase rate (or IFT decrease rate) at these higher coverages is now independent of oil viscosity but dependent upon both surface pressure itself and asphaltene monomer concentration. The long-term asymptotic behavior of surface coverage is found to be consistent with the predictions from surface diffusion-mediated random sequential adsorption (RSA) theory which indicates a linear dependency of surface coverage on 1/√t and an asymptotic limit very close to 2D random close packing of polydispersed disks (85%). From these observations RSA theory parameters were extracted that enabled description of adsorption kinetics for the range of conditions above surface coverage of 35%.
Journal of Colloid and Interface Science | 2011
Olivia Niitsoo; Alexander Couzis
Combining metal nanoparticles and dielectrics (e.g. silica) to produce composite materials with high dielectric constant is motivated by application in energy storage. Control over dielectric properties and their uniformity throughout the composite material is best accomplished if the composite is comprised of metal core - dielectric shell structured nanoparticles with tunable dimensions. We have synthesized silver nanoparticles in the range of 40-100nm average size using low concentration of saccharide simultaneously as the reducing agent and electrostatic stabilizer. Coating these silver particles with silica from tetraalkoxysilanes has different outcomes depending on the alcoholic solvent and the silver particle concentration. A common issue in solution-based synthesis of core-shell particles is heterogeneous nucleation whereupon two populations are formed: the desired core-shell particles and undesired coreless particles of the shell material. We report the formation of Ag@SiO(2) core-shell particles without coreless silica particles as the byproduct in 2-propanol. In ethanol, it depends on the silver surface area available whether homogeneous nucleation of silica on silver is achieved. In methanol and 1-butanol, core-shell particles did not form. This demonstrates the significance of controlling the tetraalkoxysilane hydrolysis rate when growing silica shells on silver nanoparticles.
Langmuir | 2008
C. Lo; Junshe Zhang; P. Somasundaran; Shaohua Lu; Alexander Couzis; Jae W. Lee
The interaction between surfactants and hydrates provides insight into the role of surfactants in promoting hydrate formation. This work aims at understanding the adsorption behavior of sodium dodecyl sulfate (SDS) on cyclopentane (CP) hydrates and its derivative surfactant on tetrabutylammonium bromide (TBAB) hydrates. Cyclopentane (CP) is a hydrophobic former whereas tetrabutylammonium bromide (TBAB) is a salt that forms semiclathrate hydrates. The adsorption on these two hydrates was studied by zeta potential and pyrene fluorescence measurements. CP hydrates have a negative surface charge in the absence of SDS, and it decreases to a minimum as the SDS concentration increases from 0 to 0.17 mM. Then, it increases with further increased SDS concentration. The adsorption density of DS (-) on CP hydrates reaches a saturated value at 1.73 mM SDS. The micropolarity parameter of the TBAB hydrate/water interface starts to increase rapidly at 0.17 mM SDS and levels off at 1.73 mM SDS. The presence of Br (-) in TBAB hydrate suspensions could compete with TBADS (from association of DS (-) and TBA (+)) and DS (-) for the adsorption on the hydrate surface, but they have a much stronger affinity for the hydrates than does Br (-). From the fluorescence measurements, it was found that the micropolarity of the hydrate/water interface is mainly dependent on the polarity of hydrate formers.
Journal of Chemical Physics | 2008
Jonathan D. Halverson; Charles Maldarelli; Alexander Couzis; Joel Koplik
The dynamic behavior of a nanodroplet of a pure liquid on a wetting gradient was studied using molecular dynamics simulation. The spontaneous motion of the droplet is induced by a force imbalance at the contact line. We considered a Lennard-Jones system as well as water on a self-assembled monolayer (SAM). The motion of the droplet for the Lennard-Jones case was found to be steady with a simple power law describing its center-of-mass position with time. The behavior of the water droplet was found to depend on the uniformity of the wetting gradient, which was composed of methyl- and hydroxyl-terminated alkanethiol chains on Au(111). When the gradient was nonuniform the droplet was found to become pinned at an intermediate position. However, a uniform gradient with the same overall strength was found to drive a droplet consisting of 2000 water molecules a distance of 25 nm or nearly ten times its initial base radius in tens of nanoseconds. A similar result was obtained for a droplet that was twice as large. Despite the many differences between the Lennard-Jones and water-SAM systems, the two show a similar overall behavior for the motion. Fair agreement was seen between the simulation results for the water droplet speed and the theoretical predictions. When the driving force was corrected for contact angle hysteresis, the agreement was seen to improve.
Langmuir | 2010
Jung Hun Song; Alexander Couzis; Jae W. Lee
Macroscopic interfacial interactions between cyclopentane (CP) hydrates and various surfactants droplets are examined in a CP/n-decane oil mixture. Initial contact force and subsequent z-axis dependent retraction force are measured utilizing a high-resolution microbalance integrated with a micrometer-precision stage. The resulting retraction force is utilized to determine the overall adhesion energy of the system. In addition, interfacial tensions and contact angles of the system are examined to further understand the effect of surface-active agents and substrates on the initial contact and retraction forces.
Journal of Chemical Physics | 2001
M. S. Tomassone; Alexander Couzis; Charles Maldarelli; Jayanth R. Banavar; Joel Koplik
Molecular dynamics simulations are used to study the formation of gaseous and liquid expanded phases of surfactants on a liquid/vapor interface. Both insoluble and soluble surfactants are considered, modeled as freely jointed chains in a monatomic solvent with appropriate Lennard–Jones interactions. For both insoluble and soluble cases our results indicate that the surface tension as a function of coverage shows a plateau close to the clean interface value until a critical surface concentration, beyond which the surface tension lowers steeply. For the soluble case, we also detail a complete Gibbs construction for the surface excess and report an adsorption isotherm. Snapshots of the positions of the molecules, together with analysis of correlation functions, show that these model surfactants assemble from solution and exhibit coexistence in the plateau of isolated surfactants and liquid aggregates. We have identified this coexistence as a gas–liquid phase transition, in agreement with recent experimental ...
Langmuir | 2010
Jung Hun Song; Alexander Couzis; Jae W. Lee
A method for precise and reproducible initial contact force measurements is introduced utilizing an apparatus fabricated with a microbalance and z-axis stage to study the interaction behavior between cyclopentane (CP) hydrate and water in a temperature controlled hydrocarbon environment. CP hydrate probes are prepared using hydrate slurries composed of 5 wt % CP and Wilhelmy rods. The CP hydrate probe is slowly brought into contact with water to determine the initial contact force. The effect of substrate morphology on the initial contact force is reported through employing aluminum substrates prepared using physical vapor deposition (PVD) and milling. Accurate and facile measurements are performed by applying a high-resolution microbalance with 0.1 microN resolution to provide repeatable and consistent results of initial contact force between hydrate and water.